Spaces:
Sleeping
Sleeping
File size: 4,736 Bytes
d72ec4c 7166938 0266ad5 7166938 d72ec4c 7166938 d72ec4c 7166938 d72ec4c 7166938 c224b96 7166938 31f4fb8 7166938 fe47503 7166938 d5a2d2d 7166938 f2018a5 7166938 965ee30 3917e6c 965ee30 7166938 9f238e4 7166938 b8b5968 4845564 965ee30 7166938 0266ad5 e591a2e 0266ad5 965ee30 0266ad5 7166938 965ee30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import numpy as np
import pandas as pd
import datasets
import streamlit as st
from streamlit_cytoscapejs import st_cytoscapejs
st.set_page_config(layout='wide')
# parse out gene_ids from URL query args to it's possible to link to this page
query_params = st.query_params
if "gene_ids" in query_params.keys():
input_gene_ids = query_params["gene_ids"]
else:
input_gene_ids = "TGME49_231630,TGME49_230210"
# use "\n" as the separator so it shows correctly in the text area
input_gene_ids = input_gene_ids.replace(",", "\n")
st.markdown("""
# ToxoCEN Network
**ToxoCEN** is a co-expression network for *Toxoplasma gondii* built on 719 RNA-seq runs across 39 studies.
A pair of genes are said to be co-expressed when their expression is correlated across different conditions and
is often a marker for genes to be involved in similar processes.
To Cite:
CS Arnold, Y Wang, VB Carruthers, MJ O'Meara
ToxoCEN: A Co-Expression Network for Toxoplasma gondii
* Code available at https://github.com/maomlab/CalCEN/tree/master/vignettes/ToxoCEN
* Full network and dataset: https://huggingface.co/datasets/maomlab/ToxoCEN
## Plot a network for a set of genes
Put a ``TGME49_######`` gene_id, one each row to seed the network
""")
TGME49_transcript_annotations = datasets.load_dataset(
path = "maomlab/ToxoCEN",
data_files = {"TGME49_transcript_annotations": "TGME49_transcript_annotations.tsv"})
TGME49_transcript_annotations = TGME49_transcript_annotations["TGME49_transcript_annotations"].to_pandas()
top_coexp_hits = datasets.load_dataset(
path = "maomlab/ToxoCEN",
data_files = {"top_coexp_hits": "top_coexp_hits.tsv"})
top_coexp_hits = top_coexp_hits["top_coexp_hits"].to_pandas()
col1, col3, padding = st.columns(spec = [0.2, 0.2, 0.6])
with col1:
input_gene_ids = st.text_area(
label = "Gene IDs",
value = f"{input_gene_ids}",
help = "TGME49 Gene IDs e.g. TGME49_231630")
coexp_score_threshold = 0.85
##################################
# Parse and check the user input #
##################################
seed_gene_ids = [gene_id.strip() for gene_id in input_gene_ids.split("\n")]
neighbors = []
for seed_gene_id in seed_gene_ids:
neighbors.append(
top_coexp_hits[
(top_coexp_hits.gene_id_1 == seed_gene_id) & (top_coexp_hits.coexp_score > coexp_score_threshold)])
neighbors = pd.concat(neighbors)
neighbor_gene_ids = list(set(neighbors.gene_id_2))
gene_ids = seed_gene_ids + neighbor_gene_ids
gene_types = ['seed'] * len(seed_gene_ids) + ['neighbor'] * len(neighbor_gene_ids)
TGME49_ids = []
gene_names = []
descriptions = []
for gene_id in gene_ids:
try:
TGME49_id = TGME49_transcript_annotations.loc[TGME49_transcript_annotations["gene_id"] == gene_id]["TGME49_id"].values[0]
gene_name = TGME49_transcript_annotations.loc[TGME49_transcript_annotations["gene_id"] == gene_id]["gene_name"].values[0]
description = TGME49_transcript_annotations.loc[TGME49_transcript_annotations["gene_id"] == gene_id]["description"].values[0]
except:
st.error(f"Unable to locate TGME49_id for Gene ID: {gene_id}, it should be of the form 'TGME49_######'")
TGME49_id = None
gene_name = None
description = None
TGME49_ids.append(TGME49_id)
gene_names.append(gene_name)
descriptions.append(description)
node_info = pd.DataFrame({
"gene_id" : gene_ids,
"gene_type" : gene_types,
"TGME49_id": TGME49_ids,
"gene_name": gene_names,
"description": description})
elements = []
for i in range(len(gene_ids)):
elements.append({
"data": {
"id": gene_ids[i],
"label": gene_name if gene_names[i] is not None else gene_ids[i]},
"position": {
"x" : i * 10,
"y" : i * 10}})
for i in range(len(neighbors.index)):
edge = neighbors.iloc[i]
elements.append({
"data" : {
"source" : edge["gene_id_1"],
"target" : edge["gene_id_2"],
"label" : edge["coexp_score"]}})
with col3:
st.text('') # help alignment with input box
st.download_button(
label = "Download as as TSV",
data = neighbors.to_csv(sep ='\t').encode('utf-8'),
file_name = f"ToxoCEN_network.tsv",
mime = "text/csv")
##########################################################
stylesheet = [
{"selector": "node", "style": {"width": 50, "height": 20, "shape": "rectangle"}},
{"selector": "edge", "style": {"width": 10}},
{"selector": "layout", "style": {"name": "random"}}
]
st.title("ToxoCEN Network")
clicked_elements = st_cytoscapejs(
elements = elements,
stylesheet = stylesheet,
width = 1500,
height= 1500)
|