Spaces:
Sleeping
Sleeping
File size: 2,034 Bytes
f67eeb9 774bbad 8f33cca 774bbad 9ce0bc5 3a0d682 9ce0bc5 8f33cca f67eeb9 b18f058 8f33cca 61ae154 8f33cca e6b3eda 3a0d682 9ce0bc5 77d0e61 1807dda 61ae154 8f33cca f67eeb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import datasets
import streamlit as st
import numpy as np
import pandas as pd
import altair as alt
st.markdown("""
# CryptoCEN Top50 co-expressed partners
**CryptoCEN** is a co-expression network for *Cryptococcus neoformans* built on 1,524 RNA-seq runs across 34 studies.
A pair of genes are said to be co-expressed when their expression is correlated across different conditions and
is often a marker for genes to be involved in similar processes.
To Cite:
MJ O'Meara, JR Rapala, CB Nichols, C Alexandre, B Billmyre, JL Steenwyk, A Alspaugh,
TR O'Meara CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals
novel proteins involved in DNA damage repair
* Code available at https://github.com/maomlab/CalCEN/tree/master/vignettes/CryptoCEN
* Full network and dataset: https://huggingface.co/datasets/maomlab/CryptoCEN
## Look up top-coexpressed partners:
Put in the ``CNAG_#####`` gene_id for a gene and expand the table to get the top 50 co-expressed genes.
``coexp_score`` ranges between ``[0-1]``, where ``1`` is the best and greater than ``0.85`` can be considered significant.
""")
top_coexp_hits = datasets.load_dataset(
path = "maomlab/CryptoCEN",
data_files = {"top_coexp_hits": "top_coexp_hits.tsv"})
top_coexp_hits = top_coexp_hits["top_coexp_hits"].to_pandas()
col1, col2 = st.columns(spec = [0.7, 0.3])
with col1:
gene_id = st.text_input(
label = "Gene ID",
value = "CNAG_04365",
max_chars = 10,
help = "CNAG Gene ID e.g. CNAG_04365")
top_coexp_hits = top_coexp_hits[
top_coexp_hits.gene_id_1 == gene_id]
top_coexp_hits = top_coexp_hits[[
'gene_id_1', 'gene_symbol_1', 'description_1',
'gene_id_2', 'gene_symbol_2', 'description_2',
'coexp_score', 'blastp_EValue']]
top_coexp_hits.reset_index()
with col2:
st.download_button(
label="Download data as TSV",
data = top_coexp_hits.to_csv(sep ='\t').encode('utf-8'),
file_name= f"top_coexp_hits_{gene_id}.tsv",
mime="text/csv")
st.table(top_coexp_hits)
|