import datasets import streamlit as st import numpy as np import pandas as pd import altair as alt st.set_page_config(layout='wide') st.markdown(""" # CryptoCEN Expression Scatter **CryptoCEN** is a co-expression network for *Cryptococcus neoformans* built on 1,524 RNA-seq runs across 34 studies. A pair of genes are said to be co-expressed when their expression is correlated across different conditions and is often a marker for genes to be involved in similar processes. To Cite: MJ O'Meara, JR Rapala, CB Nichols, C Alexandre, B Billmyre, JL Steenwyk, A Alspaugh, TR O'Meara CryptoCEN: A Co-Expression Network for Cryptococcus neoformans reveals novel proteins involved in DNA damage repair * Code available at https://github.com/maomlab/CalCEN/tree/master/vignettes/CryptoCEN * Full network and dataset: https://huggingface.co/datasets/maomlab/CryptoCEN ## Plot scatter plot expression for a pair of genes across studies. Put in the ``CNAG_#####`` gene_id for two genes. """) h99_transcript_annotations = datasets.load_dataset( path = "maomlab/CryptoCEN", data_files = {"h99_transcript_annotations": "h99_transcript_annotations.tsv"}) h99_transcript_annotations = h99_transcript_annotations["h99_transcript_annotations"].to_pandas() estimated_expression_meta = datasets.load_dataset( path = "maomlab/CryptoCEN", data_files = {"estimated_expression_meta": "Data/estimated_expression_meta.tsv"}) estimated_expression_meta = estimated_expression_meta["estimated_expression_meta"].to_pandas() estimated_expression = datasets.load_dataset( path = "maomlab/CryptoCEN", data_files = {"estimated_expression": "estimated_expression.tsv"}) estimated_expression = estimated_expression["estimated_expression"].to_pandas() print(f"estimated_expression shape: {estimated_expression.shape}") print(f"transcript_annotations are equal: {sum(h99_transcript_annotations['cnag_id'] == estimated_expression.index)}") col1, col2, col3 = st.columns(spec = [0.2, 0.2, 0.6]) with col1: gene_id_1 = st.text_input( label = "Gene ID 1", value = "CNAG_04365", max_chars = 10, help = "CNAG Gene ID e.g. CNAG_04365") with col2: gene_id_2 = st.text_input( label = "Gene ID 2", value = "CNAG_04222", max_chars = 10, help = "CNAG Gene ID e.g. CNAG_04222") chart_data = pd.DataFrame({ "expression_1": np.log10(estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_1].to_numpy()[0] + 1), "expression_2": np.log10(estimated_expression.loc[h99_transcript_annotations["gene_id"] == gene_id_2].to_numpy()[0] + 1), "run_accession": estimated_expression.columns, "run_accession_meta": estimated_expression_meta["run_accession"], "study_accession": estimated_expression_meta["study_accession"]}) print(f"run_ids are equal: {sum(chart_data['run_accession'] == chart_data['run_accession_meta'])}") chart = ( alt.Chart(chart_data) .mark_circle() .encode(x="expression_1", y="expression_2", size=5, color="study_accession", tooltip=["run_accession", "study_accession"])) st.altair_chart(chart, use_container_width=True)