Spaces:
Sleeping
Sleeping
File size: 19,189 Bytes
b78d4d3 94b55f0 a246b15 5697c10 a246b15 5697c10 b78d4d3 94b55f0 602d806 527f685 602d806 89cecf3 3649694 602d806 5dfd724 9b1e831 9c66171 b78d4d3 b9c715a 9b1e831 b78d4d3 9b1e831 5697c10 b78d4d3 5697c10 b78d4d3 e7f8afe 9b1e831 9c66171 b78d4d3 5697c10 b78d4d3 5697c10 b78d4d3 6efb913 73f30e5 b78d4d3 ec28a2a b78d4d3 5697c10 d356357 5697c10 0d01d71 b78d4d3 5697c10 ec28a2a 5697c10 9b1e831 602d806 068f2e8 602d806 9b1e831 602d806 a2d6d06 5697c10 602d806 9c66171 602d806 5697c10 b78d4d3 5697c10 b78d4d3 5697c10 b78d4d3 cbc536a 5697c10 b78d4d3 5697c10 f24b36e b78d4d3 5697c10 b78d4d3 5697c10 b78d4d3 5697c10 b78d4d3 5697c10 b78d4d3 602d806 5697c10 b78d4d3 5697c10 e8c4fd1 0d01d71 b78d4d3 1a2f284 b78d4d3 1a2f284 b78d4d3 cbc536a b78d4d3 e8c4fd1 b78d4d3 e8c4fd1 b78d4d3 f304a83 b78d4d3 cbc536a b78d4d3 5697c10 9357d80 b78d4d3 72fadf7 b78d4d3 602d806 5697c10 b78d4d3 5697c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
# app.py — Unified ColPali + MCP Agent (indices-only search, agent receives images)
import os
import base64
import tempfile
from io import BytesIO
from urllib.request import urlretrieve
from typing import List, Tuple, Dict, Any
import gradio as gr
from gradio_pdf import PDF
import torch
from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm
from colpali_engine.models import ColQwen2, ColQwen2Processor
# Optional (used by the streaming agent)
from openai import OpenAI
# =============================
# Globals & Config
# =============================
api_key_env = os.getenv("OPENAI_API_KEY", "").strip()
ds: List[torch.Tensor] = [] # page embeddings
images: List[Image.Image] = [] # PIL images in page order
current_pdf_path: str | None = None
device_map = (
"cuda:0"
if torch.cuda.is_available()
else ("mps" if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available() else "cpu")
)
# =============================
# Load Model & Processor
# =============================
model = ColQwen2.from_pretrained(
"vidore/colqwen2-v1.0",
torch_dtype=torch.bfloat16,
device_map=device_map,
attn_implementation="flash_attention_2",
).eval()
processor = ColQwen2Processor.from_pretrained("vidore/colqwen2-v1.0")
# =============================
# Utilities
# =============================
def _ensure_model_device() -> str:
dev = (
"cuda:0"
if torch.cuda.is_available()
else ("mps" if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available() else "cpu")
)
if str(model.device) != dev:
model.to(dev)
return dev
def encode_image_to_base64(image: Image.Image) -> str:
"""Encodes a PIL image to base64 (JPEG)."""
buffered = BytesIO()
image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
# =============================
# Indexing Helpers
# =============================
def convert_files(pdf_path: str) -> List[Image.Image]:
"""Convert a single PDF path into a list of PIL Images (pages)."""
imgs = convert_from_path(pdf_path, thread_count=4)
if len(imgs) >= 800:
raise gr.Error("The number of images in the dataset should be less than 800.")
return imgs
def index_gpu(imgs: List[Image.Image]) -> str:
"""Embed a list of images (pages) with ColQwen2 (ColPali) and store in globals."""
global ds, images
device = _ensure_model_device()
# reset previous dataset
ds = []
images = imgs
dataloader = DataLoader(
images,
batch_size=4,
shuffle=False,
collate_fn=lambda x: processor.process_images(x).to(model.device),
)
for batch_doc in tqdm(dataloader, desc="Indexing pages"):
with torch.no_grad():
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
return f"Indexed {len(images)} pages successfully."
def index_from_path(pdf_path: str) -> str:
imgs = convert_files(pdf_path)
return index_gpu(imgs)
def index_from_url(url: str) -> Tuple[str, str]:
"""
Download a PDF from URL and index it.
Returns: (status_message, saved_pdf_path)
"""
tmp_dir = tempfile.mkdtemp(prefix="colpali_")
local_path = os.path.join(tmp_dir, "document.pdf")
urlretrieve(url, local_path)
status = index_from_path(local_path)
return status, local_path
# =============================
# MCP Tools
# =============================
def search(query: str, k: int = 5) -> List[int]:
"""
Search within an indexed PDF and return ONLY the indices of the most relevant pages (0-based).
MCP tool description:
- name: mcp_test_search
- description: Search within the indexed PDF for the most relevant pages and return their 0-based indices only.
- input_schema:
type: object
properties:
query: {type: string, description: "User query in natural language."}
k: {type: integer, minimum: 1, maximum: 50, default: 5, description: "Number of top pages to retrieve (before neighbor expansion)."}
required: ["query"]
Returns:
List[int]: Sorted unique 0-based indices of pages to inspect (includes neighbor expansion).
"""
global ds, images
if not images or not ds:
return []
k = max(1, min(int(k), len(images)))
device = _ensure_model_device()
# Encode query
with torch.no_grad():
batch_query = processor.process_queries([query]).to(model.device)
embeddings_query = model(**batch_query)
q_vecs = list(torch.unbind(embeddings_query.to("cpu")))
# Score and select top-k
scores = processor.score(q_vecs, ds, device=device)
top_k_indices = scores[0].topk(k).indices.tolist()
print(query, top_k_indices)
# Neighbor expansion for context
base = set(top_k_indices)
expanded = set(base)
for i in base:
expanded.add(i - 1)
expanded.add(i + 1)
expanded = {i for i in expanded if 0 <= i < len(images)} # strict bounds
return sorted(expanded)
def get_pages(indices: List[int]) -> Dict[str, Any]:
"""
Return page images (as data URLs) for the given 0-based indices.
MCP tool description:
- name: mcp_test_get_pages
- description: Given 0-based indices from mcp_test_search, return the corresponding page images as data URLs for vision reasoning.
- input_schema:
type: object
properties:
indices: {
type: array,
items: { type: integer, minimum: 0 },
description: "0-based page indices to fetch",
}
required: ["indices"]
Returns:
{"images": [{"index": int, "page": int, "image_url": str}], "count": int}
"""
global images
print("indices to get", indices)
if not images:
return {"images": [], "count": 0}
uniq = sorted({i for i in indices if 0 <= i < len(images)})
payload = []
for idx in uniq:
im = images[idx]
b64 = encode_image_to_base64(im)
payload.append({
"index": idx,
"page": idx + 1,
"image_url": f"data:image/jpeg;base64,{b64}",
})
return {"images": payload, "count": len(payload)}
# =============================
# Gradio UI — Unified App
# =============================
SYSTEM = (
"""
You are a PDF research agent with two tools:
• mcp_test_search(query: string, k: int) → returns ONLY 0-based page indices.
• mcp_test_get_pages(indices: int[]) → returns the actual page images (as base64 images) for vision.
Policy & procedure:
1) Break the user task into 1–4 targeted sub-queries (in English).
2) For each sub-query, call mcp_test_search to get indices; THEN immediately call mcp_get_pages with those indices to obtain the page images.
3) Continue reasoning using ONLY the provided images. If info is insufficient, iterate: refine sub-queries and call the tools again. You may make further tool calls later in the conversation as needed.
Grounding & citations:
• Use ONLY information visible in the provided page images.
• After any claim, cite as (p.<page>).
• If an answer is not present, say “Not found in the provided pages.”
Final deliverable:
• Write a clear, standalone Markdown answer in the user's language. For lists of dates/items, include a concise table.
• Do not refer to “the above” or “previous messages”.
"""
).strip()
DEFAULT_MCP_SERVER_URL = "https://manu-mcp-test.hf.space/gradio_api/mcp/"
DEFAULT_MCP_SERVER_LABEL = "colpali_rag"
DEFAULT_ALLOWED_TOOLS = "mcp_test_search,mcp_test_get_pages"
def stream_agent(question: str,
api_key: str,
model: str,
server_url: str,
server_label: str,
require_approval: str,
allowed_tools: str):
"""
Streaming generator for the agent.
NOTE: We rely on OpenAI's MCP tool routing. The mcp_test_search tool returns indices only;
the agent is instructed to call mcp_get_pages next to receive images and continue reasoning.
"""
final_text = "Answer:"
summary_text = "Reasoning:"
log_lines = ["Log"]
if not api_key:
yield "⚠️ **Please provide your OpenAI API key.**", "", ""
return
client = OpenAI(api_key=api_key)
tools = [{
"type": "mcp",
"server_label": server_label or DEFAULT_MCP_SERVER_LABEL,
"server_url": server_url or DEFAULT_MCP_SERVER_URL,
"allowed_tools": [t.strip() for t in (allowed_tools or DEFAULT_ALLOWED_TOOLS).split(",") if t.strip()],
"require_approval": require_approval or "never",
}]
req_kwargs = dict(
model=model,
input=[
{"role": "system", "content": SYSTEM},
{"role": "user", "content": question},
],
reasoning={"effort": "medium", "summary": "auto"},
tools=tools,
)
try:
with client.responses.stream(**req_kwargs) as stream:
for event in stream:
etype = getattr(event, "type", "")
if etype == "response.output_text.delta":
final_text += event.delta
yield final_text, summary_text, "\n".join(log_lines[-400:])
elif etype == "response.reasoning_summary_text.delta":
summary_text += event.delta
yield final_text, summary_text, "\n".join(log_lines[-400:])
elif etype in ("response.function_call_arguments.delta", "response.tool_call_arguments.delta"):
# Show tool call argument deltas in the log for transparency
log_lines.append(str(event.delta))
elif etype == "response.error":
log_lines.append(f"[error] {getattr(event, 'error', '')}")
yield final_text, summary_text, "\n".join(log_lines[-400:])
# finalize
_final = stream.get_final_response()
yield final_text, summary_text, "\n".join(log_lines[-400:])
except Exception as e:
yield f"❌ {e}", summary_text, "\n".join(log_lines[-400:])
CUSTOM_CSS = """
:root {
--bg: #0e1117;
--panel: #111827;
--accent: #7c3aed;
--accent-2: #06b6d4;
--text: #e5e7eb;
--muted: #9ca3af;
--border: #1f2937;
}
.gradio-container {max-width: 1180px !important; margin: 0 auto !important;}
body {background: radial-gradient(1200px 600px at 20% -10%, rgba(124,58,237,.25), transparent 60%),
radial-gradient(1000px 500px at 120% 10%, rgba(6,182,212,.2), transparent 60%),
var(--bg) !important;}
.app-header {
display:flex; gap:16px; align-items:center; padding:20px 18px; margin:8px 0 12px;
border:1px solid var(--border); border-radius:20px;
background: linear-gradient(180deg, rgba(255,255,255,.02), rgba(255,255,255,.01));
box-shadow: 0 10px 30px rgba(0,0,0,.25), inset 0 1px 0 rgba(255,255,255,.05);
}
.app-header .icon {
width:48px; height:48px; display:grid; place-items:center; border-radius:14px;
background: linear-gradient(135deg, var(--accent), var(--accent-2));
color:white; font-size:26px;
}
.app-header h1 {font-size:22px; margin:0; color:var(--text); letter-spacing:.2px;}
.app-header p {margin:2px 0 0; color:var(--muted); font-size:14px;}
.card {
border:1px solid var(--border); border-radius:18px; padding:14px 16px;
background: linear-gradient(180deg, rgba(255,255,255,.02), rgba(255,255,255,.01));
box-shadow: 0 12px 28px rgba(0,0,0,.18), inset 0 1px 0 rgba(255,255,255,.04);
}
.gr-button-primary {border-radius:12px !important; font-weight:600;}
.gradio-container .tabs {border-radius:16px; overflow:hidden; border:1px solid var(--border);}
.markdown-wrap {min-height: 260px;}
.summary-wrap {min-height: 180px;}
.gr-markdown, .gr-prose { color: var(--text) !important; }
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {color: #f3f4f6;}
.gr-markdown a {color: var(--accent-2); text-decoration: none;}
.gr-markdown a:hover {text-decoration: underline;}
.gr-markdown table {width: 100%; border-collapse: collapse; margin: 10px 0 16px;}
.gr-markdown th, .gr-markdown td {border: 1px solid var(--border); padding: 8px 10px;}
.gr-markdown th {background: rgba(255,255,255,.03);}
.gr-markdown pre, .gr-markdown code { background: #0b1220; color: #eaeaf0; border-radius: 12px; border: 1px solid #172036; }
.gr-markdown pre {padding: 12px 14px; overflow:auto;}
.gr-markdown blockquote { border-left: 4px solid var(--accent); padding: 6px 12px; margin: 8px 0; color: #d1d5db; background: rgba(124,58,237,.06); border-radius: 8px; }
.log-box { font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; white-space: pre-wrap; color: #d1d5db; background:#0b1220; border:1px solid #172036; border-radius:14px; padding:12px; max-height:280px; overflow:auto; }
"""
def build_ui():
theme = gr.themes.Soft()
with gr.Blocks(title="ColPali PDF RAG + MCP Agent (Indices-only)", theme=theme, css=CUSTOM_CSS) as demo:
gr.HTML(
"""
<div class="app-header">
<div class="icon">📚</div>
<div>
<h1>ColPali PDF Search + Streaming Agent</h1>
<p>Index PDFs with ColQwen2 (ColPali). The search tool returns page indices only; the agent fetches images and reasons visually.</p>
</div>
</div>
"""
)
with gr.Tab("1) Index & Preview"):
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
index_btn = gr.Button("📥 Index Uploaded PDF", variant="secondary")
url_box = gr.Textbox(
label="Or index from URL",
placeholder="https://example.com/file.pdf",
value="",
)
index_url_btn = gr.Button("🌐 Load From URL", variant="secondary")
status_box = gr.Textbox(label="Status", interactive=False)
with gr.Column(scale=2):
pdf_view = PDF(label="PDF Preview")
# wiring
def handle_upload(file):
global current_pdf_path
if file is None:
return "Please upload a PDF.", None
path = getattr(file, "name", file)
status = index_from_path(path)
current_pdf_path = path
return status, path
def handle_url(url: str):
global current_pdf_path
if not url or not url.lower().endswith(".pdf"):
return "Please provide a direct PDF URL ending in .pdf", None
status, path = index_from_url(url)
current_pdf_path = path
return status, path
index_btn.click(handle_upload, inputs=[pdf_input], outputs=[status_box, pdf_view])
index_url_btn.click(handle_url, inputs=[url_box], outputs=[status_box, pdf_view])
with gr.Tab("2) Ask (Direct — returns indices)"):
with gr.Row():
with gr.Column(scale=1):
query_box = gr.Textbox(placeholder="Enter your question…", label="Query", lines=4)
k_slider = gr.Slider(minimum=1, maximum=50, step=1, label="Number of results (k)", value=5)
search_button = gr.Button("🔍 Search", variant="primary")
with gr.Column(scale=2):
output_text = gr.Textbox(label="Indices (0-based)", lines=12, placeholder="[0, 1, 2, ...]")
search_button.click(search, inputs=[query_box, k_slider], outputs=[output_text])
with gr.Tab("3) Agent (Streaming)"):
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Group():
question = gr.Textbox(
label="Your question",
placeholder="Enter your question…",
lines=8,
elem_classes=["card"],
)
run_btn = gr.Button("Run", variant="primary")
with gr.Accordion("Connection & Model", open=False, elem_classes=["card"]):
with gr.Row():
api_key_box = gr.Textbox(
label="OpenAI API Key",
placeholder="sk-...",
type="password",
value=api_key_env,
)
model_box = gr.Dropdown(
label="Model",
choices=["gpt-5", "gpt-4.1", "gpt-4o"],
value="gpt-5",
)
with gr.Row():
server_url_box = gr.Textbox(
label="MCP Server URL",
value=DEFAULT_MCP_SERVER_URL,
)
server_label_box = gr.Textbox(
label="MCP Server Label",
value=DEFAULT_MCP_SERVER_LABEL,
)
with gr.Row():
allowed_tools_box = gr.Textbox(
label="Allowed Tools (comma-separated)",
value=DEFAULT_ALLOWED_TOOLS,
)
require_approval_box = gr.Dropdown(
label="Require Approval",
choices=["never", "auto", "always"],
value="never",
)
with gr.Column(scale=3):
with gr.Tab("Answer (Markdown)"):
final_md = gr.Markdown(value="", elem_classes=["card", "markdown-wrap"])
with gr.Tab("Live Summary (Markdown)"):
summary_md = gr.Markdown(value="", elem_classes=["card", "summary-wrap"])
with gr.Tab("Event Log"):
log_md = gr.Markdown(value="", elem_classes=["card", "log-box"])
run_btn.click(
stream_agent,
inputs=[question, api_key_box, model_box, server_url_box, server_label_box, require_approval_box, allowed_tools_box],
outputs=[final_md, summary_md, log_md],
)
return demo
if __name__ == "__main__":
demo = build_ui()
# mcp_server=True exposes this app's MCP endpoint at /gradio_api/mcp/
demo.queue(max_size=5).launch(debug=True, mcp_server=True)
|