File size: 19,189 Bytes
b78d4d3
 
94b55f0
a246b15
5697c10
a246b15
5697c10
b78d4d3
94b55f0
602d806
527f685
602d806
89cecf3
3649694
602d806
 
 
5dfd724
9b1e831
9c66171
b78d4d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c715a
9b1e831
b78d4d3
 
 
9b1e831
5697c10
 
 
b78d4d3
5697c10
b78d4d3
e7f8afe
9b1e831
9c66171
b78d4d3
5697c10
b78d4d3
 
 
 
 
 
 
 
 
 
 
 
 
5697c10
b78d4d3
6efb913
 
 
 
73f30e5
b78d4d3
 
 
ec28a2a
b78d4d3
5697c10
 
d356357
 
5697c10
 
0d01d71
b78d4d3
 
5697c10
 
ec28a2a
5697c10
 
 
9b1e831
602d806
 
068f2e8
602d806
9b1e831
602d806
a2d6d06
5697c10
602d806
9c66171
602d806
 
5697c10
 
 
 
 
 
 
 
b78d4d3
5697c10
 
b78d4d3
5697c10
 
 
 
 
 
 
 
b78d4d3
 
 
 
cbc536a
5697c10
b78d4d3
5697c10
 
f24b36e
b78d4d3
5697c10
 
 
 
b78d4d3
5697c10
 
 
b78d4d3
5697c10
 
 
 
b78d4d3
5697c10
 
 
 
 
 
 
 
b78d4d3
602d806
5697c10
b78d4d3
5697c10
e8c4fd1
0d01d71
b78d4d3
1a2f284
 
 
 
 
b78d4d3
1a2f284
b78d4d3
 
 
cbc536a
b78d4d3
 
 
 
e8c4fd1
b78d4d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8c4fd1
b78d4d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f304a83
b78d4d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc536a
b78d4d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5697c10
9357d80
b78d4d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72fadf7
b78d4d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602d806
5697c10
b78d4d3
 
 
5697c10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# app.py — Unified ColPali + MCP Agent (indices-only search, agent receives images)

import os
import base64
import tempfile
from io import BytesIO
from urllib.request import urlretrieve
from typing import List, Tuple, Dict, Any

import gradio as gr
from gradio_pdf import PDF
import torch

from pdf2image import convert_from_path
from PIL import Image
from torch.utils.data import DataLoader
from tqdm import tqdm

from colpali_engine.models import ColQwen2, ColQwen2Processor

# Optional (used by the streaming agent)
from openai import OpenAI


# =============================
# Globals & Config
# =============================
api_key_env = os.getenv("OPENAI_API_KEY", "").strip()
ds: List[torch.Tensor] = []     # page embeddings
images: List[Image.Image] = []  # PIL images in page order
current_pdf_path: str | None = None

device_map = (
    "cuda:0"
    if torch.cuda.is_available()
    else ("mps" if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available() else "cpu")
)


# =============================
# Load Model & Processor
# =============================
model = ColQwen2.from_pretrained(
    "vidore/colqwen2-v1.0",
    torch_dtype=torch.bfloat16,
    device_map=device_map,
    attn_implementation="flash_attention_2",
).eval()

processor = ColQwen2Processor.from_pretrained("vidore/colqwen2-v1.0")


# =============================
# Utilities
# =============================

def _ensure_model_device() -> str:
    dev = (
        "cuda:0"
        if torch.cuda.is_available()
        else ("mps" if getattr(torch.backends, "mps", None) and torch.backends.mps.is_available() else "cpu")
    )
    if str(model.device) != dev:
        model.to(dev)
    return dev


def encode_image_to_base64(image: Image.Image) -> str:
    """Encodes a PIL image to base64 (JPEG)."""
    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")


# =============================
# Indexing Helpers
# =============================

def convert_files(pdf_path: str) -> List[Image.Image]:
    """Convert a single PDF path into a list of PIL Images (pages)."""
    imgs = convert_from_path(pdf_path, thread_count=4)
    if len(imgs) >= 800:
        raise gr.Error("The number of images in the dataset should be less than 800.")
    return imgs


def index_gpu(imgs: List[Image.Image]) -> str:
    """Embed a list of images (pages) with ColQwen2 (ColPali) and store in globals."""
    global ds, images
    device = _ensure_model_device()

    # reset previous dataset
    ds = []
    images = imgs

    dataloader = DataLoader(
        images,
        batch_size=4,
        shuffle=False,
        collate_fn=lambda x: processor.process_images(x).to(model.device),
    )

    for batch_doc in tqdm(dataloader, desc="Indexing pages"):
        with torch.no_grad():
            batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
            embeddings_doc = model(**batch_doc)
        ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
    return f"Indexed {len(images)} pages successfully."


def index_from_path(pdf_path: str) -> str:
    imgs = convert_files(pdf_path)
    return index_gpu(imgs)


def index_from_url(url: str) -> Tuple[str, str]:
    """
    Download a PDF from URL and index it.
    Returns: (status_message, saved_pdf_path)
    """
    tmp_dir = tempfile.mkdtemp(prefix="colpali_")
    local_path = os.path.join(tmp_dir, "document.pdf")
    urlretrieve(url, local_path)
    status = index_from_path(local_path)
    return status, local_path


# =============================
# MCP Tools
# =============================

def search(query: str, k: int = 5) -> List[int]:
    """
    Search within an indexed PDF and return ONLY the indices of the most relevant pages (0-based).

    MCP tool description:
      - name: mcp_test_search
      - description: Search within the indexed PDF for the most relevant pages and return their 0-based indices only.
      - input_schema:
          type: object
          properties:
            query: {type: string, description: "User query in natural language."}
            k: {type: integer, minimum: 1, maximum: 50, default: 5, description: "Number of top pages to retrieve (before neighbor expansion)."}
          required: ["query"]

    Returns:
      List[int]: Sorted unique 0-based indices of pages to inspect (includes neighbor expansion).
    """
    global ds, images

    if not images or not ds:
        return []

    k = max(1, min(int(k), len(images)))
    device = _ensure_model_device()

    # Encode query
    with torch.no_grad():
        batch_query = processor.process_queries([query]).to(model.device)
        embeddings_query = model(**batch_query)
        q_vecs = list(torch.unbind(embeddings_query.to("cpu")))

    # Score and select top-k
    scores = processor.score(q_vecs, ds, device=device)
    top_k_indices = scores[0].topk(k).indices.tolist()
    print(query, top_k_indices)

    # Neighbor expansion for context
    base = set(top_k_indices)
    expanded = set(base)
    for i in base:
        expanded.add(i - 1)
        expanded.add(i + 1)
    expanded = {i for i in expanded if 0 <= i < len(images)}  # strict bounds

    return sorted(expanded)


def get_pages(indices: List[int]) -> Dict[str, Any]:
    """
    Return page images (as data URLs) for the given 0-based indices.

    MCP tool description:
      - name: mcp_test_get_pages
      - description: Given 0-based indices from mcp_test_search, return the corresponding page images as data URLs for vision reasoning.
      - input_schema:
          type: object
          properties:
            indices: {
              type: array,
              items: { type: integer, minimum: 0 },
              description: "0-based page indices to fetch",
            }
          required: ["indices"]

    Returns:
      {"images": [{"index": int, "page": int, "image_url": str}], "count": int}
    """
    global images
    print("indices to get", indices)

    if not images:
        return {"images": [], "count": 0}

    uniq = sorted({i for i in indices if 0 <= i < len(images)})
    payload = []
    for idx in uniq:
        im = images[idx]
        b64 = encode_image_to_base64(im)
        payload.append({
            "index": idx,
            "page": idx + 1,
            "image_url": f"data:image/jpeg;base64,{b64}",
        })
    return {"images": payload, "count": len(payload)}


# =============================
# Gradio UI — Unified App
# =============================

SYSTEM = (
    """
You are a PDF research agent with two tools:
  • mcp_test_search(query: string, k: int) → returns ONLY 0-based page indices.
  • mcp_test_get_pages(indices: int[]) → returns the actual page images (as base64 images) for vision.

Policy & procedure:
  1) Break the user task into 1–4 targeted sub-queries (in English).
  2) For each sub-query, call mcp_test_search to get indices; THEN immediately call mcp_get_pages with those indices to obtain the page images.
  3) Continue reasoning using ONLY the provided images. If info is insufficient, iterate: refine sub-queries and call the tools again. You may make further tool calls later in the conversation as needed.

Grounding & citations:
  • Use ONLY information visible in the provided page images.
  • After any claim, cite as (p.<page>).
  • If an answer is not present, say “Not found in the provided pages.”

Final deliverable:
  • Write a clear, standalone Markdown answer in the user's language. For lists of dates/items, include a concise table.
  • Do not refer to “the above” or “previous messages”.
"""
).strip()

DEFAULT_MCP_SERVER_URL = "https://manu-mcp-test.hf.space/gradio_api/mcp/"
DEFAULT_MCP_SERVER_LABEL = "colpali_rag"
DEFAULT_ALLOWED_TOOLS = "mcp_test_search,mcp_test_get_pages"


def stream_agent(question: str,
                 api_key: str,
                 model: str,
                 server_url: str,
                 server_label: str,
                 require_approval: str,
                 allowed_tools: str):
    """
    Streaming generator for the agent.
    NOTE: We rely on OpenAI's MCP tool routing. The mcp_test_search tool returns indices only;
    the agent is instructed to call mcp_get_pages next to receive images and continue reasoning.
    """
    final_text = "Answer:"
    summary_text = "Reasoning:"
    log_lines = ["Log"]

    if not api_key:
        yield "⚠️ **Please provide your OpenAI API key.**", "", ""
        return

    client = OpenAI(api_key=api_key)

    tools = [{
        "type": "mcp",
        "server_label": server_label or DEFAULT_MCP_SERVER_LABEL,
        "server_url": server_url or DEFAULT_MCP_SERVER_URL,
        "allowed_tools": [t.strip() for t in (allowed_tools or DEFAULT_ALLOWED_TOOLS).split(",") if t.strip()],
        "require_approval": require_approval or "never",
    }]

    req_kwargs = dict(
        model=model,
        input=[
            {"role": "system", "content": SYSTEM},
            {"role": "user", "content": question},
        ],
        reasoning={"effort": "medium", "summary": "auto"},
        tools=tools,
    )

    try:
        with client.responses.stream(**req_kwargs) as stream:
            for event in stream:
                etype = getattr(event, "type", "")

                if etype == "response.output_text.delta":
                    final_text += event.delta
                    yield final_text, summary_text, "\n".join(log_lines[-400:])

                elif etype == "response.reasoning_summary_text.delta":
                    summary_text += event.delta
                    yield final_text, summary_text, "\n".join(log_lines[-400:])

                elif etype in ("response.function_call_arguments.delta", "response.tool_call_arguments.delta"):
                    # Show tool call argument deltas in the log for transparency
                    log_lines.append(str(event.delta))

                elif etype == "response.error":
                    log_lines.append(f"[error] {getattr(event, 'error', '')}")
                    yield final_text, summary_text, "\n".join(log_lines[-400:])

            # finalize
            _final = stream.get_final_response()
            yield final_text, summary_text, "\n".join(log_lines[-400:])

    except Exception as e:
        yield f"❌ {e}", summary_text, "\n".join(log_lines[-400:])


CUSTOM_CSS = """
:root {
  --bg: #0e1117;
  --panel: #111827;
  --accent: #7c3aed;
  --accent-2: #06b6d4;
  --text: #e5e7eb;
  --muted: #9ca3af;
  --border: #1f2937;
}
.gradio-container {max-width: 1180px !important; margin: 0 auto !important;}

body {background: radial-gradient(1200px 600px at 20% -10%, rgba(124,58,237,.25), transparent 60%),
                  radial-gradient(1000px 500px at 120% 10%, rgba(6,182,212,.2), transparent 60%),
                  var(--bg) !important;}

.app-header {
  display:flex; gap:16px; align-items:center; padding:20px 18px; margin:8px 0 12px;
  border:1px solid var(--border); border-radius:20px;
  background: linear-gradient(180deg, rgba(255,255,255,.02), rgba(255,255,255,.01));
  box-shadow: 0 10px 30px rgba(0,0,0,.25), inset 0 1px 0 rgba(255,255,255,.05);
}
.app-header .icon {
  width:48px; height:48px; display:grid; place-items:center; border-radius:14px;
  background: linear-gradient(135deg, var(--accent), var(--accent-2));
  color:white; font-size:26px;
}
.app-header h1 {font-size:22px; margin:0; color:var(--text); letter-spacing:.2px;}
.app-header p {margin:2px 0 0; color:var(--muted); font-size:14px;}

.card {
  border:1px solid var(--border); border-radius:18px; padding:14px 16px;
  background: linear-gradient(180deg, rgba(255,255,255,.02), rgba(255,255,255,.01));
  box-shadow: 0 12px 28px rgba(0,0,0,.18), inset 0 1px 0 rgba(255,255,255,.04);
}

.gr-button-primary {border-radius:12px !important; font-weight:600;}
.gradio-container .tabs {border-radius:16px; overflow:hidden; border:1px solid var(--border);} 

.markdown-wrap {min-height: 260px;}
.summary-wrap {min-height: 180px;}

.gr-markdown, .gr-prose { color: var(--text) !important; }
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {color: #f3f4f6;}
.gr-markdown a {color: var(--accent-2); text-decoration: none;}
.gr-markdown a:hover {text-decoration: underline;}
.gr-markdown table {width: 100%; border-collapse: collapse; margin: 10px 0 16px;}
.gr-markdown th, .gr-markdown td {border: 1px solid var(--border); padding: 8px 10px;}
.gr-markdown th {background: rgba(255,255,255,.03);} 
.gr-markdown pre, .gr-markdown code { background: #0b1220; color: #eaeaf0; border-radius: 12px; border: 1px solid #172036; }
.gr-markdown pre {padding: 12px 14px; overflow:auto;}
.gr-markdown blockquote { border-left: 4px solid var(--accent); padding: 6px 12px; margin: 8px 0; color: #d1d5db; background: rgba(124,58,237,.06); border-radius: 8px; }

.log-box { font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace; white-space: pre-wrap; color: #d1d5db; background:#0b1220; border:1px solid #172036; border-radius:14px; padding:12px; max-height:280px; overflow:auto; }
"""


def build_ui():
    theme = gr.themes.Soft()
    with gr.Blocks(title="ColPali PDF RAG + MCP Agent (Indices-only)", theme=theme, css=CUSTOM_CSS) as demo:
        gr.HTML(
            """
            <div class="app-header">
              <div class="icon">📚</div>
              <div>
                <h1>ColPali PDF Search + Streaming Agent</h1>
                <p>Index PDFs with ColQwen2 (ColPali). The search tool returns page indices only; the agent fetches images and reasons visually.</p>
              </div>
            </div>
            """
        )

        with gr.Tab("1) Index & Preview"):
            with gr.Row():
                with gr.Column(scale=1):
                    pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
                    index_btn = gr.Button("📥 Index Uploaded PDF", variant="secondary")
                    url_box = gr.Textbox(
                        label="Or index from URL",
                        placeholder="https://example.com/file.pdf",
                        value="",
                    )
                    index_url_btn = gr.Button("🌐 Load From URL", variant="secondary")
                    status_box = gr.Textbox(label="Status", interactive=False)
                with gr.Column(scale=2):
                    pdf_view = PDF(label="PDF Preview")

            # wiring
            def handle_upload(file):
                global current_pdf_path
                if file is None:
                    return "Please upload a PDF.", None
                path = getattr(file, "name", file)
                status = index_from_path(path)
                current_pdf_path = path
                return status, path

            def handle_url(url: str):
                global current_pdf_path
                if not url or not url.lower().endswith(".pdf"):
                    return "Please provide a direct PDF URL ending in .pdf", None
                status, path = index_from_url(url)
                current_pdf_path = path
                return status, path

            index_btn.click(handle_upload, inputs=[pdf_input], outputs=[status_box, pdf_view])
            index_url_btn.click(handle_url, inputs=[url_box], outputs=[status_box, pdf_view])

        with gr.Tab("2) Ask (Direct — returns indices)"):
            with gr.Row():
                with gr.Column(scale=1):
                    query_box = gr.Textbox(placeholder="Enter your question…", label="Query", lines=4)
                    k_slider = gr.Slider(minimum=1, maximum=50, step=1, label="Number of results (k)", value=5)
                    search_button = gr.Button("🔍 Search", variant="primary")
                with gr.Column(scale=2):
                    output_text = gr.Textbox(label="Indices (0-based)", lines=12, placeholder="[0, 1, 2, ...]")


            search_button.click(search, inputs=[query_box, k_slider], outputs=[output_text])

        with gr.Tab("3) Agent (Streaming)"):
            with gr.Row(equal_height=True):
                with gr.Column(scale=1):
                    with gr.Group():
                        question = gr.Textbox(
                            label="Your question",
                            placeholder="Enter your question…",
                            lines=8,
                            elem_classes=["card"],
                        )
                        run_btn = gr.Button("Run", variant="primary")

                    with gr.Accordion("Connection & Model", open=False, elem_classes=["card"]):
                        with gr.Row():
                            api_key_box = gr.Textbox(
                                label="OpenAI API Key",
                                placeholder="sk-...",
                                type="password",
                                value=api_key_env,
                            )
                            model_box = gr.Dropdown(
                                label="Model",
                                choices=["gpt-5", "gpt-4.1", "gpt-4o"],
                                value="gpt-5",
                            )
                        with gr.Row():
                            server_url_box = gr.Textbox(
                                label="MCP Server URL",
                                value=DEFAULT_MCP_SERVER_URL,
                            )
                            server_label_box = gr.Textbox(
                                label="MCP Server Label",
                                value=DEFAULT_MCP_SERVER_LABEL,
                            )
                        with gr.Row():
                            allowed_tools_box = gr.Textbox(
                                label="Allowed Tools (comma-separated)",
                                value=DEFAULT_ALLOWED_TOOLS,
                            )
                            require_approval_box = gr.Dropdown(
                                label="Require Approval",
                                choices=["never", "auto", "always"],
                                value="never",
                            )

                with gr.Column(scale=3):
                    with gr.Tab("Answer (Markdown)"):
                        final_md = gr.Markdown(value="", elem_classes=["card", "markdown-wrap"])
                    with gr.Tab("Live Summary (Markdown)"):
                        summary_md = gr.Markdown(value="", elem_classes=["card", "summary-wrap"])
                    with gr.Tab("Event Log"):
                        log_md = gr.Markdown(value="", elem_classes=["card", "log-box"])

            run_btn.click(
                stream_agent,
                inputs=[question, api_key_box, model_box, server_url_box, server_label_box, require_approval_box, allowed_tools_box],
                outputs=[final_md, summary_md, log_md],
            )

    return demo


if __name__ == "__main__":
    demo = build_ui()
    # mcp_server=True exposes this app's MCP endpoint at /gradio_api/mcp/
    demo.queue(max_size=5).launch(debug=True, mcp_server=True)