Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,59 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
|
26 |
-
|
|
|
27 |
|
|
|
28 |
response = ""
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from openai import OpenAI
|
4 |
|
5 |
+
# Load API key securely from Hugging Face secrets or environment
|
6 |
+
api_key = os.getenv("NV_API_KEY")
|
7 |
+
if not api_key:
|
8 |
+
raise ValueError("Please set the NV_API_KEY environment variable in your Hugging Face Space.")
|
9 |
|
10 |
+
# NVIDIA-compatible OpenAI client
|
11 |
+
client = OpenAI(
|
12 |
+
base_url="https://integrate.api.nvidia.com/v1",
|
13 |
+
api_key=api_key
|
14 |
+
)
|
15 |
|
16 |
+
# System message
|
17 |
+
system_prompt = {
|
18 |
+
"role": "system",
|
19 |
+
"content": "You are a helpful assistant to answer user queries."
|
20 |
+
}
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Main chat function with memory from Gradio
|
23 |
+
def get_text_response(user_message, history):
|
24 |
+
# Convert Gradio history to OpenAI format
|
25 |
+
formatted_history = [{"role": "user" if i % 2 == 0 else "assistant", "content": msg}
|
26 |
+
for i, msg in enumerate(sum(history, []))]
|
27 |
|
28 |
+
# Combine system prompt, history, and current user input
|
29 |
+
messages = [system_prompt] + formatted_history + [{"role": "user", "content": user_message}]
|
30 |
|
31 |
+
# Stream the response
|
32 |
response = ""
|
33 |
+
completion = client.chat.completions.create(
|
34 |
+
model="nvidia/llama-3.1-nemotron-70b-instruct",
|
35 |
+
messages=messages,
|
36 |
+
temperature=0.5,
|
37 |
+
top_p=1,
|
38 |
+
max_tokens=100,
|
39 |
+
stream=True
|
40 |
+
)
|
41 |
+
|
42 |
+
for chunk in completion:
|
43 |
+
delta = chunk.choices[0].delta
|
44 |
+
if delta and delta.content:
|
45 |
+
response += delta.content
|
46 |
+
|
47 |
+
return response
|
48 |
+
|
49 |
+
# Gradio Chat Interface
|
50 |
demo = gr.ChatInterface(
|
51 |
+
fn=get_text_response,
|
52 |
+
title="🧠 Nemotron 70B Assistant",
|
53 |
+
theme="soft",
|
54 |
+
textbox=gr.Textbox(placeholder="Ask me anything...", container=False),
|
55 |
+
examples=["How are you doing?", "What are your interests?", "Which places do you like to visit?"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
)
|
57 |
|
|
|
58 |
if __name__ == "__main__":
|
59 |
+
demo.queue().launch()
|