manoj555 commited on
Commit
a2561e3
·
verified ·
1 Parent(s): 58ee28c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -52
app.py CHANGED
@@ -1,64 +1,59 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
 
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ from openai import OpenAI
4
 
5
+ # Load API key securely from Hugging Face secrets or environment
6
+ api_key = os.getenv("NV_API_KEY")
7
+ if not api_key:
8
+ raise ValueError("Please set the NV_API_KEY environment variable in your Hugging Face Space.")
9
 
10
+ # NVIDIA-compatible OpenAI client
11
+ client = OpenAI(
12
+ base_url="https://integrate.api.nvidia.com/v1",
13
+ api_key=api_key
14
+ )
15
 
16
+ # System message
17
+ system_prompt = {
18
+ "role": "system",
19
+ "content": "You are a helpful assistant to answer user queries."
20
+ }
 
 
 
 
21
 
22
+ # Main chat function with memory from Gradio
23
+ def get_text_response(user_message, history):
24
+ # Convert Gradio history to OpenAI format
25
+ formatted_history = [{"role": "user" if i % 2 == 0 else "assistant", "content": msg}
26
+ for i, msg in enumerate(sum(history, []))]
27
 
28
+ # Combine system prompt, history, and current user input
29
+ messages = [system_prompt] + formatted_history + [{"role": "user", "content": user_message}]
30
 
31
+ # Stream the response
32
  response = ""
33
+ completion = client.chat.completions.create(
34
+ model="nvidia/llama-3.1-nemotron-70b-instruct",
35
+ messages=messages,
36
+ temperature=0.5,
37
+ top_p=1,
38
+ max_tokens=100,
39
+ stream=True
40
+ )
41
+
42
+ for chunk in completion:
43
+ delta = chunk.choices[0].delta
44
+ if delta and delta.content:
45
+ response += delta.content
46
+
47
+ return response
48
+
49
+ # Gradio Chat Interface
50
  demo = gr.ChatInterface(
51
+ fn=get_text_response,
52
+ title="🧠 Nemotron 70B Assistant",
53
+ theme="soft",
54
+ textbox=gr.Textbox(placeholder="Ask me anything...", container=False),
55
+ examples=["How are you doing?", "What are your interests?", "Which places do you like to visit?"]
 
 
 
 
 
 
 
 
56
  )
57
 
 
58
  if __name__ == "__main__":
59
+ demo.queue().launch()