Update app.py
Browse files
app.py
CHANGED
@@ -4,44 +4,48 @@ from langchain import LLMChain, PromptTemplate
|
|
4 |
from langchain.memory import ConversationBufferMemory
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
6 |
|
7 |
-
# Load
|
8 |
-
model_name = "microsoft/DialoGPT-medium"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
|
12 |
-
# Create pipeline
|
13 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=1000, do_sample=True)
|
14 |
|
15 |
-
# Wrap with HuggingFacePipeline
|
16 |
llm = HuggingFacePipeline(pipeline=pipe)
|
17 |
|
|
|
18 |
template = """You are a helpful assistant to answer user queries.
|
19 |
{chat_history}
|
20 |
User: {user_message}
|
21 |
Chatbot:"""
|
22 |
|
23 |
prompt = PromptTemplate(
|
24 |
-
input_variables=["chat_history", "user_message"],
|
|
|
25 |
)
|
26 |
|
|
|
27 |
memory = ConversationBufferMemory(memory_key="chat_history")
|
28 |
|
|
|
29 |
llm_chain = LLMChain(
|
30 |
llm=llm,
|
31 |
prompt=prompt,
|
32 |
-
verbose=True,
|
33 |
memory=memory,
|
34 |
)
|
35 |
|
|
|
36 |
def get_text_response(user_message, history):
|
37 |
response = llm_chain.predict(user_message=user_message)
|
38 |
return response
|
39 |
|
|
|
40 |
demo = gr.ChatInterface(
|
41 |
get_text_response,
|
42 |
examples=["How are you doing?", "What are your interests?", "Which places do you like to visit?"]
|
43 |
)
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
demo.queue().launch(share=True, debug=True)
|
|
|
4 |
from langchain.memory import ConversationBufferMemory
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
6 |
|
7 |
+
# Load model and tokenizer
|
8 |
+
model_name = "microsoft/DialoGPT-medium"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
|
12 |
+
# Create HF pipeline
|
13 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=1000, do_sample=True)
|
14 |
|
15 |
+
# Wrap with HuggingFacePipeline for LangChain
|
16 |
llm = HuggingFacePipeline(pipeline=pipe)
|
17 |
|
18 |
+
# Prompt Template
|
19 |
template = """You are a helpful assistant to answer user queries.
|
20 |
{chat_history}
|
21 |
User: {user_message}
|
22 |
Chatbot:"""
|
23 |
|
24 |
prompt = PromptTemplate(
|
25 |
+
input_variables=["chat_history", "user_message"],
|
26 |
+
template=template
|
27 |
)
|
28 |
|
29 |
+
# Memory
|
30 |
memory = ConversationBufferMemory(memory_key="chat_history")
|
31 |
|
32 |
+
# LLM Chain
|
33 |
llm_chain = LLMChain(
|
34 |
llm=llm,
|
35 |
prompt=prompt,
|
|
|
36 |
memory=memory,
|
37 |
)
|
38 |
|
39 |
+
# Response function
|
40 |
def get_text_response(user_message, history):
|
41 |
response = llm_chain.predict(user_message=user_message)
|
42 |
return response
|
43 |
|
44 |
+
# Gradio Chat Interface
|
45 |
demo = gr.ChatInterface(
|
46 |
get_text_response,
|
47 |
examples=["How are you doing?", "What are your interests?", "Which places do you like to visit?"]
|
48 |
)
|
49 |
|
50 |
+
# Launch the app (no share=True needed for Spaces)
|
51 |
+
demo.launch()
|
|