|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
from langchain_community.llms import HuggingFacePipeline |
|
from langchain_community.memory import ConversationBufferMemory |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain.chains import LLMChain |
|
|
|
|
|
model_name = "microsoft/DialoGPT-medium" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
max_length=1000, |
|
do_sample=True, |
|
truncation=True, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
|
|
llm = HuggingFacePipeline(pipeline=pipe) |
|
|
|
|
|
template = """You are a helpful assistant to answer user queries. |
|
{chat_history} |
|
User: {user_message} |
|
Chatbot:""" |
|
|
|
prompt = PromptTemplate( |
|
input_variables=["chat_history", "user_message"], |
|
template=template |
|
) |
|
|
|
|
|
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) |
|
|
|
|
|
llm_chain = LLMChain( |
|
llm=llm, |
|
prompt=prompt, |
|
memory=memory, |
|
verbose=True |
|
) |
|
|
|
|
|
def get_text_response(user_message, history): |
|
response = llm_chain.predict(user_message=user_message) |
|
return response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=get_text_response, |
|
examples=["How are you doing?", "What are your interests?", "Which places do you like to visit?"], |
|
title="AI Chatbot", |
|
description="A simple chatbot using LangChain + HuggingFace + Gradio", |
|
theme="default", |
|
type="chat" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch(share=True) |
|
|