rag-ros2 / app.py
mannadamay12's picture
Update app.py
60848d1 verified
raw
history blame
7.04 kB
import spaces
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, TextStreamer, pipeline, AutoModelForCausalLM
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_community.llms import HuggingFacePipeline
# System prompts
DEFAULT_SYSTEM_PROMPT = """
You are a ROS2 expert assistant. Based on the context provided, give direct and concise answers.
If the information is not in the context, respond with "I don't find that information in the available documentation."
Keep responses to 1-2 lines maximum.
""".strip()
# Expanded pre-populated questions
PREDEFINED_QUESTIONS = [
"Select a question...",
"Tell me how can I navigate to a specific pose - include replanning aspects in your answer.",
"Can you provide me with code for this task?",
"How do I set up obstacle avoidance in ROS2 navigation?",
"What are the key parameters for tuning the nav2 planner?",
"How do I integrate custom recovery behaviors?"
]
# Helper text for tooltip
DROPDOWN_TOOLTIP = """
You can either:
• Select a predefined question from this dropdown
• Type your own question in the text box below
"""
def generate_prompt(context: str, question: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
return f"""
[INST] <<SYS>>
{system_prompt}
<</SYS>>
Context: {context}
Question: {question}
Answer: [/INST]
""".strip()
# Initialize embeddings and database
embeddings = HuggingFaceInstructEmbeddings(
model_name="hkunlp/instructor-base",
model_kwargs={"device": "cpu"}
)
db = Chroma(
persist_directory="db",
embedding_function=embeddings
)
def initialize_model():
model_id = "meta-llama/Llama-3.2-3B-Instruct"
token = os.environ.get("HF_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=token,
device_map="cuda" if torch.cuda.is_available() else "cpu"
)
return model, tokenizer
def question_selected(question):
if question == "Select a question...":
return ""
return question
@spaces.GPU
def respond(message, history, system_message, max_tokens, temperature, top_p):
try:
# Initialize chat history if None
history = history or []
if not message.strip():
history.append((message, "Please enter a question or select one from the dropdown menu."))
return history
model, tokenizer = initialize_model()
# Get context from database
retriever = db.as_retriever(search_kwargs={"k": 2})
docs = retriever.get_relevant_documents(message)
context = "\n".join([doc.page_content for doc in docs])
# Generate prompt
prompt = generate_prompt(context=context, question=message, system_prompt=system_message)
# Set up the pipeline
text_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=1.15
)
# Generate response
output = text_pipeline(
prompt,
return_full_text=False,
max_new_tokens=max_tokens
)[0]['generated_text']
# Add the new exchange to history
history.append((message, output.strip()))
return history
except Exception as e:
history.append((message, f"An error occurred: {str(e)}"))
return history
def clear_input():
return gr.Textbox.update(value="")
# Create the Gradio interface
with gr.Blocks(title="ROS2 Expert Assistant") as demo:
gr.Markdown("# ROS2 Expert Assistant")
gr.Markdown("Ask questions about ROS2, navigation, and robotics. I'll provide concise answers based on the available documentation.")
with gr.Row():
with gr.Column(scale=8):
# Dropdown for predefined questions
question_dropdown = gr.Dropdown(
choices=PREDEFINED_QUESTIONS,
value="Select a question...",
label="Pre-defined Questions"
)
with gr.Column(scale=1):
# Info icon with tooltip
gr.Markdown(
"""<div title="{}">ℹ️</div>""".format(DROPDOWN_TOOLTIP),
elem_classes=["tooltip"]
)
with gr.Row():
# Chat interface
chatbot = gr.Chatbot()
with gr.Row():
# Message input
msg = gr.Textbox(
label="Your Question",
placeholder="Type your question here or select one from the dropdown above...",
lines=2
)
with gr.Row():
submit = gr.Button("Submit")
clear = gr.Button("Clear")
with gr.Accordion("Advanced Settings", open=False):
system_message = gr.Textbox(
value=DEFAULT_SYSTEM_PROMPT,
label="System Message",
lines=3
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=500,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.1,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
# Add custom CSS for tooltip
gr.Markdown("""
<style>
.tooltip {
cursor: help;
font-size: 1.2em;
}
</style>
""")
# Event handlers
question_dropdown.change(
question_selected,
inputs=[question_dropdown],
outputs=[msg]
)
def submit_and_clear(message, history, system_message, max_tokens, temperature, top_p):
# First get the response
new_history = respond(message, history, system_message, max_tokens, temperature, top_p)
# Then clear the input
return new_history, gr.Textbox.update(value="")
submit.click(
submit_and_clear,
inputs=[
msg,
chatbot,
system_message,
max_tokens,
temperature,
top_p
],
outputs=[chatbot, msg]
)
clear.click(lambda: (None, ""), None, [chatbot, msg], queue=False)
msg.submit(
submit_and_clear,
inputs=[
msg,
chatbot,
system_message,
max_tokens,
temperature,
top_p
],
outputs=[chatbot, msg]
)
if __name__ == "__main__":
demo.launch(share=True)