Spaces:
Sleeping
Sleeping
Update app.py
Browse filesreplace chromadb with faiss
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
|
2 |
import os, tempfile, streamlit as st
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
5 |
from langchain.chains import create_retrieval_chain
|
6 |
-
from langchain_chroma import Chroma
|
|
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
8 |
from langchain_community.document_loaders import PyPDFLoader
|
9 |
|
@@ -43,7 +43,7 @@ if submit:
|
|
43 |
|
44 |
# Generate embeddings for the pages, and store in Chroma vector database
|
45 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
46 |
-
vectorstore =
|
47 |
|
48 |
#Configure Chroma as a retriever with top_k=5
|
49 |
st.session_state.retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
|
|
|
|
|
1 |
import os, tempfile, streamlit as st
|
2 |
from langchain.prompts import PromptTemplate
|
3 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
4 |
from langchain.chains import create_retrieval_chain
|
5 |
+
# from langchain_chroma import Chroma
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
8 |
from langchain_community.document_loaders import PyPDFLoader
|
9 |
|
|
|
43 |
|
44 |
# Generate embeddings for the pages, and store in Chroma vector database
|
45 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
46 |
+
vectorstore = FAISS.from_documents(pages, embeddings)
|
47 |
|
48 |
#Configure Chroma as a retriever with top_k=5
|
49 |
st.session_state.retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
|