Math_Agent / app.py
manasagangotri's picture
Update app.py
d16f9ab verified
raw
history blame
6.99 kB
import gradio as gr
import torch
import requests
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from datetime import datetime
import dspy
import json
# === Load Models ===
print("Loading zero-shot classifier...")
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
print("Loading embedding model...")
embedding_model = SentenceTransformer("intfloat/e5-large")
print("Loading text generation model...")
# Use a lighter model for testing
#qa_pipeline = pipeline("text-generation", model="gpt2")
# === Qdrant Setup ===
print("Connecting to Qdrant...")
qdrant_client = QdrantClient(path="qdrant_data")
collection_name = "math_problems"
# === Guard Function ===
def is_valid_math_question(text):
candidate_labels = ["math", "not math"]
result = classifier(text, candidate_labels)
print("Classifier result:", result)
return result['labels'][0] == "math" and result['scores'][0] > 0.7
# === Retrieval ===
def retrieve_from_qdrant(query):
print("Retrieving context from Qdrant...")
query_vector = embedding_model.encode(query).tolist()
hits = qdrant_client.search(collection_name=collection_name, query_vector=query_vector, limit=3)
print("Retrieved hits:", hits)
return [hit.payload for hit in hits] if hits else []
# === Web Search ===
def web_search_tavily(query):
print("Calling Tavily...")
TAVILY_API_KEY = "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"
response = requests.post(
"https://api.tavily.com/search",
json={"api_key": TAVILY_API_KEY, "query": query, "search_depth": "advanced"},
)
return response.json().get("answer", "No answer found from Tavily.")
# === DSPy Signature ===
class MathAnswer(dspy.Signature):
question = dspy.InputField()
retrieved_context = dspy.InputField()
answer = dspy.OutputField()
# === DSPy Programs ===
# === DSPy Programs with Output Guard ===
class MathRetrievalQA(dspy.Program):
def forward(self, question):
print("Inside MathRetrievalQA...")
context_items = retrieve_from_qdrant(question)
context = "\n".join([item["solution"] for item in context_items if "solution" in item])
print("Context for generation:", context)
if not context:
return {"answer": "", "retrieved_context": ""}
# === Replace below with real model call when ready ===
prompt = f"Question: {question}\nContext: {context}\nAnswer:"
print("Prompt for generation:", prompt)
# TEMP answer (replace with real generated output)
generated_answer = "This is a placeholder answer based on the context." # Simulated generation
print("Generated answer:", generated_answer)
# === Output Guard ===
if not generated_answer or len(generated_answer.strip()) < 10 or "I don't know" in generated_answer:
return {"answer": "", "retrieved_context": context}
return {"answer": generated_answer.strip(), "retrieved_context": context}
class WebFallbackQA(dspy.Program):
def forward(self, question):
print("Fallback to Tavily...")
answer = web_search_tavily(question)
if not answer or len(answer.strip()) < 10 or "No answer found" in answer:
answer = "โŒ Sorry, I couldn't find a reliable answer."
return {"answer": answer.strip(), "retrieved_context": "Tavily"}
class MathRouter(dspy.Program):
def forward(self, question):
print("Routing question:", question)
if not is_valid_math_question(question):
return {"answer": "โŒ Only math questions are accepted. Please rephrase.", "retrieved_context": ""}
result = MathRetrievalQA().forward(question)
if result["answer"]:
return result
else:
return WebFallbackQA().forward(question)
# === Feedback Storage ===
def store_feedback(question, answer, feedback, correct_answer):
entry = {
"question": question,
"model_answer": answer,
"feedback": feedback,
"correct_answer": correct_answer,
"timestamp": str(datetime.now())
}
print("Storing feedback:", entry)
with open("feedback.json", "a") as f:
f.write(json.dumps(entry) + "\n")
def load_feedback_entries():
entries = []
try:
with open("feedback.json", "r") as f:
for line in f:
entry = json.loads(line)
entries.append(entry)
except FileNotFoundError:
pass
return entries
# === Gradio Functions ===
# === Gradio Functions ===
def ask_question(question):
print("ask_question() called with:", question)
result = router.forward(question)
print("Result:", result)
return result["answer"], question, result["answer"]
def submit_feedback(question, model_answer, feedback, correct_answer):
store_feedback(question, model_answer, feedback, correct_answer)
return "โœ… Feedback received. Thank you!"
# === Gradio UI ===
with gr.Blocks() as demo:
gr.Markdown("## ๐Ÿงฎ Math Question Answering with DSPy + Feedback")
with gr.Tab("Ask a Math Question"):
with gr.Row():
question_input = gr.Textbox(label="Enter your math question", lines=2)
gr.Markdown("### ๐Ÿง  Answer:")
answer_output = gr.Markdown()
#answer_output = gr.Markdown(label="Answer")
hidden_q = gr.Textbox(visible=False)
hidden_a = gr.Textbox(visible=False)
submit_btn = gr.Button("Get Answer")
submit_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output, hidden_q, hidden_a])
with gr.Tab("Submit Feedback"):
gr.Markdown("### Was the answer helpful?")
fb_question = gr.Textbox(label="Original Question")
fb_answer = gr.Textbox(label="Model's Answer")
fb_like = gr.Radio(["๐Ÿ‘", "๐Ÿ‘Ž"], label="Your Feedback")
fb_correct = gr.Textbox(label="Correct Answer (optional)")
fb_submit_btn = gr.Button("Submit Feedback")
fb_status = gr.Textbox(label="Status", interactive=False)
feedback_display = gr.Dataframe(headers=["Question", "Answer", "Feedback", "Correct Answer", "Timestamp"],
row_count=10, max_rows=50, wrap=True)
def feedback_submission_and_display(question, answer, feedback, correct_answer):
store_feedback(question, answer, feedback, correct_answer)
entries = load_feedback_entries()
display_rows = [[
e["question"],
e["model_answer"],
e["feedback"],
e["correct_answer"],
e["timestamp"]
] for e in entries]
return "โœ… Feedback received. Thank you!", display_rows
fb_submit_btn.click(
fn=feedback_submission_and_display,
inputs=[fb_question, fb_answer, fb_like, fb_correct],
outputs=[fb_status, feedback_display]
)
demo.launch(share=True, debug=True)