Math_Agent / app.py
manasagangotri's picture
Update app.py
af77c21 verified
raw
history blame
5.07 kB
import gradio as gr
import torch
import requests
import re
from datetime import datetime
import json
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
# === Load Models ===
print("Loading zero-shot classifier...")
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
print("Loading embedding model...")
embedding_model = SentenceTransformer("intfloat/e5-large")
print("Loading WizardMath model...")
tokenizer = AutoTokenizer.from_pretrained("WizardLM/WizardMath-7B-V1.1")
model = AutoModelForCausalLM.from_pretrained(
"WizardLM/WizardMath-7B-V1.1", torch_dtype=torch.float16, device_map="auto"
)
# === Qdrant Setup ===
print("Connecting to Qdrant...")
qdrant_client = QdrantClient(path="qdrant_data")
collection_name = "math_problems"
# === Guard Functions ===
def is_valid_math_question(text):
candidate_labels = ["math", "not math"]
result = classifier(text, candidate_labels)
return result['labels'][0] == "math" and result['scores'][0] > 0.7
def output_guardrails(answer):
if not answer or len(answer.strip()) < 10:
return False
math_keywords = ["solve", "equation", "integral", "derivative", "value", "expression", "steps", "solution"]
if not any(word in answer.lower() for word in math_keywords):
return False
banned_keywords = ["kill", "bomb", "hate", "politics", "violence"]
if any(word in answer.lower() for word in banned_keywords):
return False
if re.match(r"^\s*I'm just a model|Sorry, I can't|As an AI", answer, re.IGNORECASE):
return False
return True
# === Retrieval ===
def retrieve_from_qdrant(query):
query_vector = embedding_model.encode(query).tolist()
hits = qdrant_client.search(collection_name=collection_name, query_vector=query_vector, limit=3)
return [hit.payload for hit in hits] if hits else []
# === Web Search ===
def web_search_tavily(query):
TAVILY_API_KEY = "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"
response = requests.post(
"https://api.tavily.com/search",
json={"api_key": TAVILY_API_KEY, "query": query, "search_depth": "advanced"},
)
return response.json().get("answer", "No answer found from Tavily.")
# === Answer Generation ===
def generate_step_by_step_answer(question, context=""):
prompt = f"### Question:\n{question}\n"
if context:
prompt += f"### Context:\n{context}\n"
prompt += "### Let's solve it step by step:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.7,
top_p=0.95,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = decoded.split("### Let's solve it step by step:")[-1].strip()
return answer
# === Router ===
def router(question):
if not is_valid_math_question(question):
return "โŒ Only math questions are accepted. Please rephrase."
context_items = retrieve_from_qdrant(question)
context = "\n".join([item.get("solution", "") for item in context_items])
if context:
answer = generate_step_by_step_answer(question, context)
if output_guardrails(answer):
return answer
answer = web_search_tavily(question)
return answer if output_guardrails(answer) else "โš ๏ธ No valid math answer found."
# === Feedback Storage ===
def store_feedback(question, answer, feedback, correct_answer):
entry = {
"question": question,
"model_answer": answer,
"feedback": feedback,
"correct_answer": correct_answer,
"timestamp": str(datetime.now())
}
with open("feedback.json", "a") as f:
f.write(json.dumps(entry) + "\n")
# === Gradio UI ===
def ask_question(question):
answer = router(question)
return answer, question, answer
def submit_feedback(question, model_answer, feedback):
store_feedback(question, model_answer, feedback, "")
return "โœ… Feedback received. Thank you!"
with gr.Blocks() as demo:
gr.Markdown("## ๐Ÿงฎ Math Tutor with AI Guardrails + Feedback")
with gr.Row():
question_input = gr.Textbox(label="Enter your math question", lines=2)
submit_btn = gr.Button("Get Answer")
answer_output = gr.Markdown()
hidden_q = gr.Textbox(visible=False)
hidden_a = gr.Textbox(visible=False)
submit_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output, hidden_q, hidden_a])
gr.Markdown("### ๐Ÿ“ Feedback")
fb_like = gr.Radio(["๐Ÿ‘", "๐Ÿ‘Ž"], label="Was this answer helpful?")
fb_submit_btn = gr.Button("Submit Feedback")
fb_status = gr.Textbox(label="Status", interactive=False)
fb_submit_btn.click(fn=submit_feedback,
inputs=[hidden_q, hidden_a, fb_like],
outputs=[fb_status])
demo.launch(share=True, debug=True)