Math_Agent / app.py
manasagangotri's picture
Update app.py
5eea801 verified
raw
history blame
4.23 kB
import gradio as gr
import torch
import requests
import json
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from datetime import datetime
# === Load Models ===
print("Loading zero-shot classifier...")
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
print("Loading embedding model...")
embedding_model = SentenceTransformer("intfloat/e5-large")
print("Loading step-by-step generator...")
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2")
# === Qdrant Setup ===
print("Connecting to Qdrant...")
qdrant_client = QdrantClient(path="qdrant_data")
collection_name = "math_problems"
# === Guard Function ===
def is_valid_math_question(text):
candidate_labels = ["math", "not math"]
result = classifier(text, candidate_labels)
return result['labels'][0] == "math" and result['scores'][0] > 0.7
# === Retrieval from Qdrant ===
def retrieve_from_qdrant(query):
query_vector = embedding_model.encode(query).tolist()
hits = qdrant_client.query_points(
collection_name=collection_name,
query_vector=query_vector,
limit=3
)
return [hit.payload for hit in hits] if hits else []
# === Web Search Fallback ===
def web_search_tavily(query):
TAVILY_API_KEY = "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"
response = requests.post(
"https://api.tavily.com/search",
json={"api_key": TAVILY_API_KEY, "query": query, "search_depth": "advanced"},
)
return response.json().get("answer", "No answer found from Tavily.")
# === Generator ===
def generate_step_by_step_answer(question, context):
prompt = f"Answer the following math question step-by-step:\nQuestion: {question}\nContext: {context}\nAnswer:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.7,
top_p=0.95,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# === Router ===
def router(question):
if not is_valid_math_question(question):
return "โŒ Only math questions are accepted. Please rephrase.", ""
retrieved = retrieve_from_qdrant(question)
context = "\n".join([item["solution"] for item in retrieved if "solution" in item])
if context:
answer = generate_step_by_step_answer(question, context)
return answer, context
else:
fallback = web_search_tavily(question)
return fallback, "Tavily Search"
# === Feedback Storage ===
def store_feedback(question, answer, correct_answer):
entry = {
"question": question,
"model_answer": answer,
"correct_answer": correct_answer,
"timestamp": str(datetime.now())
}
with open("feedback.json", "a") as f:
f.write(json.dumps(entry) + "\n")
# === Gradio Functions ===
def ask_question(question):
answer, context = router(question)
return answer, question, answer
def submit_feedback(question, model_answer, correct_answer):
store_feedback(question, model_answer, correct_answer)
return "โœ… Feedback received. Thank you!"
# === Gradio UI ===
with gr.Blocks() as demo:
gr.Markdown("## ๐Ÿงฎ Math Question Answering with Retrieval + Feedback")
with gr.Row():
question_input = gr.Textbox(label="Enter your math question", lines=2)
submit_btn = gr.Button("Get Answer")
answer_output = gr.Markdown(label="Answer")
hidden_q = gr.Textbox(visible=False)
hidden_a = gr.Textbox(visible=False)
submit_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output, hidden_q, hidden_a])
gr.Markdown("### ๐Ÿ“ Submit Feedback")
fb_correct = gr.Textbox(label="Correct Answer (optional)")
fb_submit = gr.Button("Submit Feedback")
fb_status = gr.Textbox(label="Status", interactive=False)
fb_submit.click(
fn=submit_feedback,
inputs=[hidden_q, hidden_a, fb_correct],
outputs=[fb_status]
)
demo.launch(share=True)