File size: 4,350 Bytes
5775448
9ec24d8
b7b20e2
 
 
 
 
 
5775448
b7b20e2
 
 
9ec24d8
b7b20e2
9ec24d8
 
b7b20e2
9ec24d8
b7b20e2
9ec24d8
b7b20e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02f7269
b7b20e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a2ff2
b7b20e2
d651b2b
63e04ea
b7b20e2
 
 
63e04ea
 
b7b20e2
 
 
a6a2ff2
b7b20e2
63e04ea
a6a2ff2
b7b20e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e04ea
 
b7b20e2
 
 
 
 
 
 
a6a2ff2
 
 
 
 
 
 
b7b20e2
a6a2ff2
 
 
 
 
 
 
 
 
 
 
 
 
b7b20e2
9ec24d8
a6a2ff2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

import gradio as gr
import torch
import requests
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from datetime import datetime
import dspy
import json

# === Load Models ===
print("Loading zero-shot classifier...")
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

print("Loading embedding model...")
embedding_model = SentenceTransformer("intfloat/e5-large")

# === Qdrant Setup ===
print("Connecting to Qdrant...")
qdrant_client = QdrantClient(path="qdrant_data")
collection_name = "math_problems"

# === Guard Function ===
def is_valid_math_question(text):
    candidate_labels = ["math", "not math"]
    result = classifier(text, candidate_labels)
    return result['labels'][0] == "math" and result['scores'][0] > 0.7

# === Retrieval ===
def retrieve_from_qdrant(query):
    query_vector = embedding_model.encode(query).tolist()
    hits = qdrant_client.search(collection_name=collection_name, query_vector=query_vector, limit=3)
    return [hit.payload for hit in hits] if hits else []

# === Web Search ===
def web_search_tavily(query):
    TAVILY_API_KEY = "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"
    response = requests.post(
        "https://api.tavily.com/search",
        json={"api_key": TAVILY_API_KEY, "query": query, "search_depth": "advanced"},
    )
    return response.json().get("answer", "No answer found from Tavily.")

# === DSPy Signature ===
class MathAnswer(dspy.Signature):
    question = dspy.InputField()
    retrieved_context = dspy.InputField()
    answer = dspy.OutputField()

# === DSPy Programs ===
class MathRetrievalQA(dspy.Program):
    def forward(self, question):
        context_items = retrieve_from_qdrant(question)
        context = "\n".join([item["solution"] for item in context_items if "solution" in item])
        if not context:
            return {"answer": "", "retrieved_context": ""}
        prompt = f"Question: {question}\nContext: {context}\nAnswer:"
        return {"answer": prompt, "retrieved_context": context}

class WebFallbackQA(dspy.Program):
    def forward(self, question):
        answer = web_search_tavily(question)
        return {"answer": answer, "retrieved_context": "Tavily"}

class MathRouter(dspy.Program):
    def forward(self, question):
        if not is_valid_math_question(question):
            return {"answer": "โŒ Only math questions are accepted. Please rephrase.", "retrieved_context": ""}
        result = MathRetrievalQA().forward(question)
        return result if result["answer"] else WebFallbackQA().forward(question)

router = MathRouter()

# === Feedback Storage ===
def store_feedback(question, answer, feedback, correct_answer):
    entry = {
        "question": question,
        "model_answer": answer,
        "feedback": feedback,
        "correct_answer": correct_answer,
        "timestamp": str(datetime.now())
    }
    with open("feedback.json", "a") as f:
        f.write(json.dumps(entry) + "\n")

# === Gradio Functions ===
def ask_question(question):
    result = router.forward(question)
    return result["answer"], question, result["answer"]

def submit_feedback(question, model_answer, feedback, correct_answer):
    store_feedback(question, model_answer, feedback, correct_answer)
    return "โœ… Feedback received. Thank you!"

# === Gradio UI ===
with gr.Blocks() as demo:
    gr.Markdown("## ๐Ÿงฎ Math Question Answering with DSPy + Feedback")

    with gr.Row():
        question_input = gr.Textbox(label="Enter your math question", lines=2)

    answer_output = gr.Markdown()
    hidden_q = gr.Textbox(visible=False)
    hidden_a = gr.Textbox(visible=False)
    
    submit_btn = gr.Button("Get Answer")
    submit_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output, hidden_q, hidden_a])

    # Feedback section on same page
    gr.Markdown("### ๐Ÿ’ฌ Give Feedback")
    fb_correct = gr.Textbox(label="Correct Answer (optional)")
    fb_like = gr.Radio(["๐Ÿ‘", "๐Ÿ‘Ž"], label="Was the answer helpful?")
    fb_submit_btn = gr.Button("Submit Feedback")
    fb_status = gr.Markdown()

    fb_submit_btn.click(fn=submit_feedback,
                        inputs=[hidden_q, hidden_a, fb_like, fb_correct],
                        outputs=[fb_status])

demo.launch(share=True, debug=True)