Spaces:
Sleeping
Sleeping
File size: 4,350 Bytes
5775448 9ec24d8 b7b20e2 5775448 b7b20e2 9ec24d8 b7b20e2 9ec24d8 b7b20e2 9ec24d8 b7b20e2 9ec24d8 b7b20e2 02f7269 b7b20e2 a6a2ff2 b7b20e2 d651b2b 63e04ea b7b20e2 63e04ea b7b20e2 a6a2ff2 b7b20e2 63e04ea a6a2ff2 b7b20e2 63e04ea b7b20e2 a6a2ff2 b7b20e2 a6a2ff2 b7b20e2 9ec24d8 a6a2ff2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import gradio as gr
import torch
import requests
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from datetime import datetime
import dspy
import json
# === Load Models ===
print("Loading zero-shot classifier...")
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
print("Loading embedding model...")
embedding_model = SentenceTransformer("intfloat/e5-large")
# === Qdrant Setup ===
print("Connecting to Qdrant...")
qdrant_client = QdrantClient(path="qdrant_data")
collection_name = "math_problems"
# === Guard Function ===
def is_valid_math_question(text):
candidate_labels = ["math", "not math"]
result = classifier(text, candidate_labels)
return result['labels'][0] == "math" and result['scores'][0] > 0.7
# === Retrieval ===
def retrieve_from_qdrant(query):
query_vector = embedding_model.encode(query).tolist()
hits = qdrant_client.search(collection_name=collection_name, query_vector=query_vector, limit=3)
return [hit.payload for hit in hits] if hits else []
# === Web Search ===
def web_search_tavily(query):
TAVILY_API_KEY = "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"
response = requests.post(
"https://api.tavily.com/search",
json={"api_key": TAVILY_API_KEY, "query": query, "search_depth": "advanced"},
)
return response.json().get("answer", "No answer found from Tavily.")
# === DSPy Signature ===
class MathAnswer(dspy.Signature):
question = dspy.InputField()
retrieved_context = dspy.InputField()
answer = dspy.OutputField()
# === DSPy Programs ===
class MathRetrievalQA(dspy.Program):
def forward(self, question):
context_items = retrieve_from_qdrant(question)
context = "\n".join([item["solution"] for item in context_items if "solution" in item])
if not context:
return {"answer": "", "retrieved_context": ""}
prompt = f"Question: {question}\nContext: {context}\nAnswer:"
return {"answer": prompt, "retrieved_context": context}
class WebFallbackQA(dspy.Program):
def forward(self, question):
answer = web_search_tavily(question)
return {"answer": answer, "retrieved_context": "Tavily"}
class MathRouter(dspy.Program):
def forward(self, question):
if not is_valid_math_question(question):
return {"answer": "โ Only math questions are accepted. Please rephrase.", "retrieved_context": ""}
result = MathRetrievalQA().forward(question)
return result if result["answer"] else WebFallbackQA().forward(question)
router = MathRouter()
# === Feedback Storage ===
def store_feedback(question, answer, feedback, correct_answer):
entry = {
"question": question,
"model_answer": answer,
"feedback": feedback,
"correct_answer": correct_answer,
"timestamp": str(datetime.now())
}
with open("feedback.json", "a") as f:
f.write(json.dumps(entry) + "\n")
# === Gradio Functions ===
def ask_question(question):
result = router.forward(question)
return result["answer"], question, result["answer"]
def submit_feedback(question, model_answer, feedback, correct_answer):
store_feedback(question, model_answer, feedback, correct_answer)
return "โ
Feedback received. Thank you!"
# === Gradio UI ===
with gr.Blocks() as demo:
gr.Markdown("## ๐งฎ Math Question Answering with DSPy + Feedback")
with gr.Row():
question_input = gr.Textbox(label="Enter your math question", lines=2)
answer_output = gr.Markdown()
hidden_q = gr.Textbox(visible=False)
hidden_a = gr.Textbox(visible=False)
submit_btn = gr.Button("Get Answer")
submit_btn.click(fn=ask_question, inputs=[question_input], outputs=[answer_output, hidden_q, hidden_a])
# Feedback section on same page
gr.Markdown("### ๐ฌ Give Feedback")
fb_correct = gr.Textbox(label="Correct Answer (optional)")
fb_like = gr.Radio(["๐", "๐"], label="Was the answer helpful?")
fb_submit_btn = gr.Button("Submit Feedback")
fb_status = gr.Markdown()
fb_submit_btn.click(fn=submit_feedback,
inputs=[hidden_q, hidden_a, fb_like, fb_correct],
outputs=[fb_status])
demo.launch(share=True, debug=True)
|