import modules.async_worker as worker import shared import glob from pathlib import Path import datetime import re import json from huggingface_hub import snapshot_download from PIL import Image class pipeline: pipeline_type = ["hugginface_dl"] model_hash = "" def parse_gen_data(self, gen_data): gen_data["original_image_number"] = gen_data["image_number"] gen_data["image_number"] = 1 gen_data["show_preview"] = False return gen_data def load_base_model(self, name): # We're not doing models here return def load_keywords(self, lora): filename = lora.replace(".safetensors", ".txt") try: with open(filename, "r") as file: data = file.read() return data except FileNotFoundError: return " " def load_loras(self, loras): return def refresh_controlnet(self, name=None): return def clean_prompt_cond_caches(self): return def process( self, gen_data=None, callback=None, ): repo = gen_data["prompt"] print(f"Downloading: {repo}") repo_id = re.sub(r"^\s*hf:\s*", "", repo, count=1) repo_id = re.sub(r"\s.*$", "", repo_id, count=1) repo_id = repo_id.replace(",", "") worker.add_result( gen_data["task_id"], "preview", (-1, f"Downloading {repo_id}...", None) ) snapshot_download( repo_id=repo_id, local_dir=f"models/diffusers/{repo_id}", resume_download=True, ) images = ["html/logo.png"] return images