Spaces:
Runtime error
Runtime error
File size: 8,955 Bytes
2de3774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import os
import sys
import cv2
import re
from shared import path_manager
import modules.async_worker as worker
from tqdm import tqdm
from modules.util import generate_temp_filename
from PIL import Image
import imageio.v3 as iio
import numpy as np
import torch
import insightface
from importlib.abc import MetaPathFinder, Loader
from importlib.util import spec_from_loader, module_from_spec
class ImportRedirector(MetaPathFinder):
def __init__(self, redirect_map):
self.redirect_map = redirect_map
def find_spec(self, fullname, path, target=None):
if fullname in self.redirect_map:
return spec_from_loader(fullname, ImportLoader(self.redirect_map[fullname]))
return None
class ImportLoader(Loader):
def __init__(self, redirect):
self.redirect = redirect
def create_module(self, spec):
return None
def exec_module(self, module):
import importlib
redirected = importlib.import_module(self.redirect)
module.__dict__.update(redirected.__dict__)
# Set up the redirection
redirect_map = {
'torchvision.transforms.functional_tensor': 'torchvision.transforms.functional'
}
sys.meta_path.insert(0, ImportRedirector(redirect_map))
import gfpgan
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
# Requirements:
# insightface==0.7.3
# onnxruntime-gpu==1.16.1
# gfpgan==1.3.8
#
# add to settings/powerup.json
#
# "Faceswap": {
# "type": "faceswap"
# }
#
# Models in models/faceswap/
# https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
# and inswapper_128.onnx from where you can find it
class pipeline:
pipeline_type = ["faceswap"]
analyser_model = None
analyser_hash = ""
swapper_model = None
swapper_hash = ""
gfpgan_model = None
def parse_gen_data(self, gen_data):
gen_data["original_image_number"] = gen_data["image_number"]
gen_data["image_number"] = 1
gen_data["show_preview"] = False
return gen_data
def load_base_model(self, name):
model_name = "inswapper_128.onnx"
if not self.swapper_hash == model_name:
print(f"Loading swapper model: {model_name}")
model_path = os.path.join(path_manager.model_paths["faceswap_path"], model_name)
try:
with open(os.devnull, "w") as sys.stdout:
self.swapper_model = insightface.model_zoo.get_model(
model_path,
download=False,
download_zip=False,
)
self.swapper_hash = model_name
sys.stdout = sys.__stdout__
except:
print(f"Failed loading model! {model_path}")
model_name = "buffalo_l"
det_thresh = 0.5
if not self.analyser_hash == model_name:
print(f"Loading analyser model: {model_name}")
try:
with open(os.devnull, "w") as sys.stdout:
self.analyser_model = insightface.app.FaceAnalysis(name=model_name)
self.analyser_model.prepare(
ctx_id=0, det_thresh=det_thresh, det_size=(640, 640)
)
self.analyser_hash = model_name
sys.stdout = sys.__stdout__
except:
print(f"Failed loading model! {model_name}")
def load_gfpgan_model(self):
if self.gfpgan_model is None:
channel_multiplier = 2
model_name = "GFPGANv1.4.pth"
model_path = os.path.join(path_manager.model_paths["faceswap_path"], model_name)
# https://github.com/TencentARC/GFPGAN/blob/master/inference_gfpgan.py
self.gfpgan_model = gfpgan.GFPGANer
self.gfpgan_model.bg_upsampler = None
# initialize model
self.gfpgan_model.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
)
upscale = 2
self.gfpgan_model.face_helper = FaceRestoreHelper(
upscale,
det_model="retinaface_resnet50",
model_rootpath=path_manager.model_paths["faceswap_path"],
)
# face_size=512,
# crop_ratio=(1, 1),
# save_ext='png',
# use_parse=True,
# device=self.device,
self.gfpgan_model.gfpgan = gfpgan.GFPGANv1Clean(
out_size=512,
num_style_feat=512,
channel_multiplier=channel_multiplier,
decoder_load_path=None,
fix_decoder=False,
num_mlp=8,
input_is_latent=True,
different_w=True,
narrow=1,
sft_half=True,
)
loadnet = torch.load(model_path)
if "params_ema" in loadnet:
keyname = "params_ema"
else:
keyname = "params"
self.gfpgan_model.gfpgan.load_state_dict(loadnet[keyname], strict=True)
self.gfpgan_model.gfpgan.eval()
self.gfpgan_model.gfpgan = self.gfpgan_model.gfpgan.to(
self.gfpgan_model.device
)
def load_keywords(self, lora):
return ""
def load_loras(self, loras):
return
def refresh_controlnet(self, name=None):
return
def clean_prompt_cond_caches(self):
return
def swap_faces(self, original_image, input_faces, out_faces):
idx = 0
for out_face in out_faces:
original_image = self.swapper_model.get(
original_image,
out_face,
input_faces[idx % len(input_faces)],
paste_back=True,
)
idx += 1
return original_image
def restore_faces(self, image):
self.load_gfpgan_model()
image_bgr = image[:, :, ::-1]
_cropped_faces, _restored_faces, gfpgan_output_bgr = self.gfpgan_model.enhance(
self.gfpgan_model,
image_bgr,
has_aligned=False,
only_center_face=False,
paste_back=True,
weight=0.5,
)
image = gfpgan_output_bgr[:, :, ::-1]
return image
def process(
self,
gen_data=None,
callback=None,
):
worker.add_result(
gen_data["task_id"],
"preview",
(-1, f"Generating ...", None)
)
input_image = gen_data["input_image"]
input_image = cv2.cvtColor(np.asarray(input_image), cv2.COLOR_RGB2BGR)
input_faces = sorted(
self.analyser_model.get(input_image), key=lambda x: x.bbox[0]
)
prompt = gen_data["prompt"].strip()
if re.fullmatch("https?://.*\.gif", prompt, re.IGNORECASE) is not None:
x = iio.immeta(prompt)
duration = x["duration"]
loop = x["loop"]
gif = cv2.VideoCapture(prompt)
# Swap
in_imgs = []
out_imgs = []
while True:
ret, frame = gif.read()
if not ret:
break
in_imgs.append(frame)
with tqdm(total=len(in_imgs), desc="Groop", unit="frames") as progress:
i=0
steps=len(in_imgs)
for frame in in_imgs:
out_faces = sorted(
self.analyser_model.get(frame), key=lambda x: x.bbox[0]
)
frame = self.swap_faces(frame, input_faces, out_faces)
out_imgs.append(
Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
)
i+=1
callback(i, 0, 0, steps, out_imgs[-1])
progress.update(1)
images = generate_temp_filename(
folder=path_manager.model_paths["temp_outputs_path"], extension="gif"
)
os.makedirs(os.path.dirname(images), exist_ok=True)
out_imgs[0].save(
images,
save_all=True,
append_images=out_imgs[1:],
optimize=True,
duration=duration,
loop=loop,
)
else:
output_image = cv2.imread(gen_data["main_view"])
if output_image is None:
images = "html/error.png"
else:
output_faces = sorted(
self.analyser_model.get(output_image), key=lambda x: x.bbox[0]
)
result_image = self.swap_faces(output_image, input_faces, output_faces)
result_image = self.restore_faces(result_image)
images = Image.fromarray(cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB))
return [images]
|