magnustragardh's picture
Change model
bb20cfb
import asyncio
import os
from pathlib import Path
import gradio as gr
import mimetypes
import requests
import pandas as pd
from llama_index.core.llms import ChatMessage, TextBlock, ImageBlock, AudioBlock
# from llama_index.llms.google_genai import GoogleGenAI
from llama_index.llms.openai import OpenAI
from llama_index.core.agent.workflow import ReActAgent, AgentOutput
from llama_index.core.tools import FunctionTool
#from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.tavily_research.base import TavilyToolSpec
from llama_index.tools.wikipedia import WikipediaToolSpec
from dotenv import load_dotenv
from pydantic import ValidationError
try:
import mlflow
mlflow.set_experiment("final_handson")
mlflow.llama_index.autolog()
except ImportError:
pass
load_dotenv()
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SYSTEM_PROMPT = (Path(__file__).parent / 'system_prompt.txt').read_text()
# GOOGLE_API_KEY = os.environ['GOOGLE_API_KEY']
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self, max_calls_per_minute=15):
self._tools = TavilyToolSpec(api_key=os.environ["TAVILY_API_KEY"]).to_tool_list()
#FunctionTool.from_defaults(TavilyToolSpec().duckduckgo_full_search)
self._tools.append(FunctionTool.from_defaults(WikipediaToolSpec().load_data))
self._tools.append(FunctionTool.from_defaults(WikipediaToolSpec().search_data))
#self._llm = GoogleGenAI(api_key=GOOGLE_API_KEY, model="gemini-2.0-flash", max_tokens=1600)
self._llm = OpenAI(model="gpt-4.1", temperature=0.0)
self._agent = ReActAgent(tools=self._tools, llm=self._llm)
# Modify the react prompt.
self._agent.update_prompts({"react_header": SYSTEM_PROMPT})
print("BasicAgent initialized.")
self._min_call_interval = 1/max_calls_per_minute
async def __call__(self, question: ChatMessage) -> str:
question.blocks[0].text
print(f"Agent received question (first 50 chars): {question.blocks[0].text[:50]}...")
# Here, we need to rate limit
agent_output = await self._agent.run(user_msg=question)
print(f"Agent returning answer: {agent_output}")
response_parts = str(agent_output).split('FINAL ANSWER: ')
if len(response_parts) > 1:
response = response_parts[-1]
else:
response = str(agent_output)
return response.strip()
def fetch_questions(api_url: str = DEFAULT_API_URL):
questions_url = f"{api_url}/questions"
print(f"Fetching questions from: {questions_url}")
response = requests.get(questions_url, timeout=15)
try:
response.raise_for_status()
except Exception:
print(f"Response text: {response.text[:500]}")
raise
questions_data = response.json()
return questions_data
def get_media_type(filename: str):
media_type_and_format = mimetypes.guess_type(filename)[0]
if media_type_and_format is not None:
media_type, media_format = media_type_and_format.split('/')
if media_type == "audio" and media_format == "mpeg":
media_format = "mp3"
return media_type, media_format
else:
return None, None
def get_media_content(item):
if item.get('file_name'):
file_response = requests.get(f"{DEFAULT_API_URL}/files/{item.get('task_id')}")
if file_response:
media_type, media_format = get_media_type(item.get('file_name'))
if media_type == 'image':
return ImageBlock(image=file_response.content)
elif media_type == 'text':
return TextBlock(text=file_response.content)
# Audio currently not supported?
elif media_type == 'audio':
return AudioBlock(audio=file_response.content, format=media_format)
def create_question_message(item):
question_text = item.get("question")
msg_blocks = [TextBlock(text=question_text)]
media_block = get_media_content(item)
if media_block is not None:
msg_blocks.append(media_block)
question_message = ChatMessage(role="user", blocks=msg_blocks)
return question_message
async def answer_question(agent, item, answers_payload, results_log):
task_id = item.get("task_id")
question_text = item.get("question")
try:
question_message = create_question_message(item)
except ValidationError:
print(f"Skipping item for which the question could not be processed: {item}")
return
if not task_id:
print(f"Skipping item with missing task_id: {item}")
return
try:
submitted_answer = await agent(question_message)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
async def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
try:
questions_data = fetch_questions()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
# print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
await answer_question(agent, item, answers_payload, results_log)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)