File size: 31,544 Bytes
a018353
 
 
 
8f67d6f
a018353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f67d6f
a018353
 
 
 
 
 
 
 
 
 
8f67d6f
a018353
 
 
 
8f67d6f
a018353
 
 
 
8f67d6f
a018353
 
 
 
 
 
 
8f67d6f
a018353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f67d6f
6f89cef
a018353
 
 
 
 
 
 
8f67d6f
a018353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f67d6f
a018353
 
 
 
 
8f67d6f
6f89cef
a018353
 
 
 
 
 
 
6f89cef
a018353
 
 
 
 
 
 
 
 
 
 
 
 
 
8f67d6f
a018353
 
 
 
 
 
 
8f67d6f
a018353
 
 
 
6f89cef
a018353
 
8f67d6f
 
a018353
 
 
 
 
8f67d6f
 
a018353
6f89cef
 
8f67d6f
6f89cef
 
8f67d6f
6f89cef
 
 
a018353
8f67d6f
a018353
 
 
 
8f67d6f
 
6f89cef
 
 
 
8f67d6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f89cef
8f67d6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f89cef
 
8f67d6f
6f89cef
 
 
 
 
8f67d6f
 
 
6f89cef
 
 
 
8f67d6f
 
a018353
8f67d6f
6f89cef
8f67d6f
6f89cef
340946f
 
 
 
 
b991cef
340946f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a018353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c95ab233",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Adding package root to sys.path: /home/mafzaal/source/lets-talk/py-src\n",
      "Current notebook directory: /home/mafzaal/source/lets-talk/py-src/notebooks\n",
      "Project root: /home/mafzaal/source/lets-talk\n"
     ]
    }
   ],
   "source": [
    "import sys\n",
    "import os\n",
    "\n",
    "# Add the project root to the Python path\n",
    "package_root = os.path.abspath(os.path.join(os.getcwd(), \"../\"))\n",
    "print(f\"Adding package root to sys.path: {package_root}\")\n",
    "if package_root not in sys.path:\n",
    "\tsys.path.append(package_root)\n",
    "\n",
    "\n",
    "notebook_dir = os.getcwd()\n",
    "print(f\"Current notebook directory: {notebook_dir}\")\n",
    "# change to the directory to the root of the project\n",
    "project_root = os.path.abspath(os.path.join(os.getcwd(), \"../../\"))\n",
    "print(f\"Project root: {project_root}\")\n",
    "os.chdir(project_root)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "15e97530",
   "metadata": {},
   "outputs": [],
   "source": [
    "import nest_asyncio\n",
    "nest_asyncio.apply()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "b4f2ddc0",
   "metadata": {},
   "outputs": [],
   "source": [
    "import lets_talk.utils.blog as blog\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "123779af",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 14/14 [00:00<00:00, 3317.53it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded 14 documents from data/\n",
      "Split 14 documents into 162 chunks\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "docs = blog.load_blog_posts()\n",
    "docs = blog.update_document_metadata(docs)\n",
    "split_docs = blog.split_documents(docs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "0b742838",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.prompts import ChatPromptTemplate\n",
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "qa_chat_model = ChatOpenAI(\n",
    "    model=\"gpt-4.1\",\n",
    "    temperature=0,\n",
    ")\n",
    "\n",
    "qa_prompt = \"\"\"\\\n",
    "Given the following context, you must generate questions based on only the provided context.\n",
    "You are to generate {n_questions} questions which should be provided in the following format:\n",
    "\n",
    "1. QUESTION #1\n",
    "2. QUESTION #2\n",
    "...\n",
    "\n",
    "Context:\n",
    "{context}\n",
    "\"\"\"\n",
    "\n",
    "qa_prompt_template = ChatPromptTemplate.from_template(qa_prompt)\n",
    "\n",
    "question_generation_chain = qa_prompt_template | qa_chat_model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "5488c3d3",
   "metadata": {},
   "outputs": [],
   "source": [
    "import tqdm\n",
    "import asyncio\n",
    "\n",
    "\n",
    "def extract_questions(response_text,n_questions):\n",
    "    # Split the response text into lines\n",
    "    lines = response_text.strip().split('\\n')\n",
    "\n",
    "    # Extract questions (format: \"1. QUESTION\")\n",
    "    extracted_questions = []\n",
    "    for line in lines:\n",
    "        line = line.strip()\n",
    "        if line and any(line.startswith(f\"{i}.\") for i in range(1, n_questions+1)):\n",
    "            # Remove the number prefix and get just the question\n",
    "            question = line.split('.', 1)[1].strip()\n",
    "            extracted_questions.append(question)\n",
    "\n",
    "    return extracted_questions\n",
    "\n",
    "def create_questions(documents, n_questions, chain):\n",
    "    question_set = []\n",
    "    \n",
    "    for doc in tqdm.tqdm(documents):\n",
    "        \n",
    "        context = doc.page_content\n",
    "\n",
    "        # Generate questions using the question generation chain\n",
    "        response = chain.invoke({\n",
    "            \"context\": context,\n",
    "            \"n_questions\": n_questions\n",
    "        })\n",
    "\n",
    "        questions = extract_questions(response.content,n_questions)\n",
    "        \n",
    "        for i, question in enumerate(questions):\n",
    "            question_set.append({\"question\":question, \"context\": context})\n",
    "            \n",
    "    return question_set"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "b1ece53b",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 162/162 [07:23<00:00,  2.74s/it]\n"
     ]
    }
   ],
   "source": [
    "ds = create_questions(documents=split_docs, n_questions=2, chain=question_generation_chain)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "965cf609",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.microsoft.datawrangler.viewer.v0+json": {
       "columns": [
        {
         "name": "index",
         "rawType": "int64",
         "type": "integer"
        },
        {
         "name": "question",
         "rawType": "object",
         "type": "string"
        },
        {
         "name": "context",
         "rawType": "object",
         "type": "string"
        }
       ],
       "conversionMethod": "pd.DataFrame",
       "ref": "f0615b27-42e5-4774-a436-51ec88bb4498",
       "rows": [
        [
         "0",
         "What role does Ragas play in evaluating the performance of applications that use Large Language Models (LLMs)?",
         "---\ntitle: \"Part 1: Introduction to Ragas: The Essential Evaluation Framework for LLM Applications\"\ndate: 2025-04-26T18:00:00-06:00\nlayout: blog\ndescription: \"Explore the essential evaluation framework for LLM applications with Ragas. Learn how to assess performance, ensure accuracy, and improve reliability in Retrieval-Augmented Generation systems.\"\ncategories: [\"AI\", \"RAG\", \"Evaluation\",\"Ragas\"]\ncoverImage: \"https://images.unsplash.com/photo-1593642634367-d91a135587b5?q=80&w=1770&auto=format&fit=crop&ixlib=rb-4.0.3\"\nreadingTime: 7\npublished: true\n---\n\nAs Large Language Models (LLMs) become fundamental components of modern applications, effectively evaluating their performance becomes increasingly critical. Whether you're building a question-answering system, a document retrieval tool, or a conversational agent, you need reliable metrics to assess how well your application performs. This is where Ragas steps in.\n\n## What is Ragas?"
        ],
        [
         "1",
         "Why is it important to have reliable metrics when building systems like question-answering tools or conversational agents with LLMs?",
         "---\ntitle: \"Part 1: Introduction to Ragas: The Essential Evaluation Framework for LLM Applications\"\ndate: 2025-04-26T18:00:00-06:00\nlayout: blog\ndescription: \"Explore the essential evaluation framework for LLM applications with Ragas. Learn how to assess performance, ensure accuracy, and improve reliability in Retrieval-Augmented Generation systems.\"\ncategories: [\"AI\", \"RAG\", \"Evaluation\",\"Ragas\"]\ncoverImage: \"https://images.unsplash.com/photo-1593642634367-d91a135587b5?q=80&w=1770&auto=format&fit=crop&ixlib=rb-4.0.3\"\nreadingTime: 7\npublished: true\n---\n\nAs Large Language Models (LLMs) become fundamental components of modern applications, effectively evaluating their performance becomes increasingly critical. Whether you're building a question-answering system, a document retrieval tool, or a conversational agent, you need reliable metrics to assess how well your application performs. This is where Ragas steps in.\n\n## What is Ragas?"
        ],
        [
         "2",
         "What are some of the key questions that Ragas helps answer when evaluating LLM applications?",
         "## What is Ragas?\n\n[Ragas](https://docs.ragas.io/en/stable/) is an open-source evaluation framework specifically designed for LLM applications, with particular strengths in Retrieval-Augmented Generation (RAG) systems. Unlike traditional NLP evaluation methods, Ragas provides specialized metrics that address the unique challenges of LLM-powered systems.\n\nAt its core, Ragas helps answer crucial questions:\n- Is my application retrieving the right information?\n- Are the responses factually accurate and consistent with the retrieved context?\n- Does the system appropriately address the user's query?\n- How well does my application handle multi-turn conversations?\n\n## Why Evaluate LLM Applications?\n\nLLMs are powerful but imperfect. They can hallucinate facts, misinterpret queries, or generate convincing but incorrect responses. For applications where accuracy and reliability matter—like healthcare, finance, or education—proper evaluation is non-negotiable."
        ],
        [
         "3",
         "Why is proper evaluation especially important for LLM applications in fields like healthcare, finance, or education?",
         "## What is Ragas?\n\n[Ragas](https://docs.ragas.io/en/stable/) is an open-source evaluation framework specifically designed for LLM applications, with particular strengths in Retrieval-Augmented Generation (RAG) systems. Unlike traditional NLP evaluation methods, Ragas provides specialized metrics that address the unique challenges of LLM-powered systems.\n\nAt its core, Ragas helps answer crucial questions:\n- Is my application retrieving the right information?\n- Are the responses factually accurate and consistent with the retrieved context?\n- Does the system appropriately address the user's query?\n- How well does my application handle multi-turn conversations?\n\n## Why Evaluate LLM Applications?\n\nLLMs are powerful but imperfect. They can hallucinate facts, misinterpret queries, or generate convincing but incorrect responses. For applications where accuracy and reliability matter—like healthcare, finance, or education—proper evaluation is non-negotiable."
        ],
        [
         "4",
         "What are the main purposes of evaluation as described in the context?",
         "Evaluation serves several key purposes:\n- **Quality assurance**: Identify and fix issues before they reach users\n- **Performance tracking**: Monitor how changes impact system performance\n- **Benchmarking**: Compare different approaches objectively\n- **Continuous improvement**: Build feedback loops to enhance your application\n\n## Key Features of Ragas\n\n### 🎯 Specialized Metrics\nRagas offers both LLM-based and computational metrics tailored to evaluate different aspects of LLM applications:\n\n- **Faithfulness**: Measures if the response is factually consistent with the retrieved context\n- **Context Relevancy**: Evaluates if the retrieved information is relevant to the query\n- **Answer Relevancy**: Assesses if the response addresses the user's question\n- **Topic Adherence**: Gauges how well multi-turn conversations stay on topic"
        ],
        [
         "5",
         "Which specialized metrics does Ragas provide for evaluating LLM applications, and what does each metric measure?",
         "Evaluation serves several key purposes:\n- **Quality assurance**: Identify and fix issues before they reach users\n- **Performance tracking**: Monitor how changes impact system performance\n- **Benchmarking**: Compare different approaches objectively\n- **Continuous improvement**: Build feedback loops to enhance your application\n\n## Key Features of Ragas\n\n### 🎯 Specialized Metrics\nRagas offers both LLM-based and computational metrics tailored to evaluate different aspects of LLM applications:\n\n- **Faithfulness**: Measures if the response is factually consistent with the retrieved context\n- **Context Relevancy**: Evaluates if the retrieved information is relevant to the query\n- **Answer Relevancy**: Assesses if the response addresses the user's question\n- **Topic Adherence**: Gauges how well multi-turn conversations stay on topic"
        ],
        [
         "6",
         "How does Ragas assist in the process of test data generation for evaluation?",
         "### 🧪 Test Data Generation\nCreating high-quality test data is often a bottleneck in evaluation. Ragas helps you generate comprehensive test datasets automatically, saving time and ensuring thorough coverage.\n\n### 🔗 Seamless Integrations\nRagas works with popular LLM frameworks and tools:\n- [LangChain](https://www.langchain.com/)\n- [LlamaIndex](https://www.llamaindex.ai/)\n- [Haystack](https://haystack.deepset.ai/)\n- [OpenAI](https://openai.com/)\n\nObservability platforms \n- [Phoenix](https://phoenix.arize.com/)\n- [LangSmith](https://python.langchain.com/docs/introduction/)\n- [Langfuse](https://www.langfuse.com/)\n\n### 📊 Comprehensive Analysis\nBeyond simple scores, Ragas provides detailed insights into your application's strengths and weaknesses, enabling targeted improvements.\n\n## Getting Started with Ragas\n\nInstalling Ragas is straightforward:\n\n```bash\nuv init && uv add ragas\n```\n\nHere's a simple example of evaluating a response using Ragas:"
        ],
        [
         "7",
         "Which popular LLM frameworks and observability platforms does Ragas integrate with?",
         "### 🧪 Test Data Generation\nCreating high-quality test data is often a bottleneck in evaluation. Ragas helps you generate comprehensive test datasets automatically, saving time and ensuring thorough coverage.\n\n### 🔗 Seamless Integrations\nRagas works with popular LLM frameworks and tools:\n- [LangChain](https://www.langchain.com/)\n- [LlamaIndex](https://www.llamaindex.ai/)\n- [Haystack](https://haystack.deepset.ai/)\n- [OpenAI](https://openai.com/)\n\nObservability platforms \n- [Phoenix](https://phoenix.arize.com/)\n- [LangSmith](https://python.langchain.com/docs/introduction/)\n- [Langfuse](https://www.langfuse.com/)\n\n### 📊 Comprehensive Analysis\nBeyond simple scores, Ragas provides detailed insights into your application's strengths and weaknesses, enabling targeted improvements.\n\n## Getting Started with Ragas\n\nInstalling Ragas is straightforward:\n\n```bash\nuv init && uv add ragas\n```\n\nHere's a simple example of evaluating a response using Ragas:"
        ],
        [
         "8",
         "What command is used to install Ragas according to the provided context?",
         "## Getting Started with Ragas\n\nInstalling Ragas is straightforward:\n\n```bash\nuv init && uv add ragas\n```\n\nHere's a simple example of evaluating a response using Ragas:\n\n```python\nfrom ragas.metrics import Faithfulness\nfrom ragas.evaluation import EvaluationDataset\nfrom ragas.dataset_schema import SingleTurnSample\nfrom langchain_openai import ChatOpenAI\nfrom ragas.llms import LangchainLLMWrapper\nfrom langchain_openai import ChatOpenAI\n\n# Initialize the LLM, you are going to new OPENAI API key\nevaluator_llm = LangchainLLMWrapper(ChatOpenAI(model=\"gpt-4o\")) \n\n# Your evaluation data\ntest_data = {\n    \"user_input\": \"What is the capital of France?\",\n    \"retrieved_contexts\": [\"Paris is the capital and most populous city of France.\"],\n    \"response\": \"The capital of France is Paris.\"\n}\n\n# Create a sample\nsample = SingleTurnSample(**test_data)  # Unpack the dictionary into the constructor"
        ],
        [
         "9",
         "In the example, which class is used to wrap the ChatOpenAI model for evaluation purposes?",
         "## Getting Started with Ragas\n\nInstalling Ragas is straightforward:\n\n```bash\nuv init && uv add ragas\n```\n\nHere's a simple example of evaluating a response using Ragas:\n\n```python\nfrom ragas.metrics import Faithfulness\nfrom ragas.evaluation import EvaluationDataset\nfrom ragas.dataset_schema import SingleTurnSample\nfrom langchain_openai import ChatOpenAI\nfrom ragas.llms import LangchainLLMWrapper\nfrom langchain_openai import ChatOpenAI\n\n# Initialize the LLM, you are going to new OPENAI API key\nevaluator_llm = LangchainLLMWrapper(ChatOpenAI(model=\"gpt-4o\")) \n\n# Your evaluation data\ntest_data = {\n    \"user_input\": \"What is the capital of France?\",\n    \"retrieved_contexts\": [\"Paris is the capital and most populous city of France.\"],\n    \"response\": \"The capital of France is Paris.\"\n}\n\n# Create a sample\nsample = SingleTurnSample(**test_data)  # Unpack the dictionary into the constructor"
        ]
       ],
       "shape": {
        "columns": 2,
        "rows": 10
       }
      },
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>question</th>\n",
       "      <th>context</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>What role does Ragas play in evaluating the pe...</td>\n",
       "      <td>---\\ntitle: \"Part 1: Introduction to Ragas: Th...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Why is it important to have reliable metrics w...</td>\n",
       "      <td>---\\ntitle: \"Part 1: Introduction to Ragas: Th...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>What are some of the key questions that Ragas ...</td>\n",
       "      <td>## What is Ragas?\\n\\n[Ragas](https://docs.raga...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Why is proper evaluation especially important ...</td>\n",
       "      <td>## What is Ragas?\\n\\n[Ragas](https://docs.raga...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>What are the main purposes of evaluation as de...</td>\n",
       "      <td>Evaluation serves several key purposes:\\n- **Q...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>Which specialized metrics does Ragas provide f...</td>\n",
       "      <td>Evaluation serves several key purposes:\\n- **Q...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>How does Ragas assist in the process of test d...</td>\n",
       "      <td>### 🧪 Test Data Generation\\nCreating high-qual...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>Which popular LLM frameworks and observability...</td>\n",
       "      <td>### 🧪 Test Data Generation\\nCreating high-qual...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>What command is used to install Ragas accordin...</td>\n",
       "      <td>## Getting Started with Ragas\\n\\nInstalling Ra...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>In the example, which class is used to wrap th...</td>\n",
       "      <td>## Getting Started with Ragas\\n\\nInstalling Ra...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                            question  \\\n",
       "0  What role does Ragas play in evaluating the pe...   \n",
       "1  Why is it important to have reliable metrics w...   \n",
       "2  What are some of the key questions that Ragas ...   \n",
       "3  Why is proper evaluation especially important ...   \n",
       "4  What are the main purposes of evaluation as de...   \n",
       "5  Which specialized metrics does Ragas provide f...   \n",
       "6  How does Ragas assist in the process of test d...   \n",
       "7  Which popular LLM frameworks and observability...   \n",
       "8  What command is used to install Ragas accordin...   \n",
       "9  In the example, which class is used to wrap th...   \n",
       "\n",
       "                                             context  \n",
       "0  ---\\ntitle: \"Part 1: Introduction to Ragas: Th...  \n",
       "1  ---\\ntitle: \"Part 1: Introduction to Ragas: Th...  \n",
       "2  ## What is Ragas?\\n\\n[Ragas](https://docs.raga...  \n",
       "3  ## What is Ragas?\\n\\n[Ragas](https://docs.raga...  \n",
       "4  Evaluation serves several key purposes:\\n- **Q...  \n",
       "5  Evaluation serves several key purposes:\\n- **Q...  \n",
       "6  ### 🧪 Test Data Generation\\nCreating high-qual...  \n",
       "7  ### 🧪 Test Data Generation\\nCreating high-qual...  \n",
       "8  ## Getting Started with Ragas\\n\\nInstalling Ra...  \n",
       "9  ## Getting Started with Ragas\\n\\nInstalling Ra...  "
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "df = pd.DataFrame(ds)\n",
    "df.head(10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "b8c025fa",
   "metadata": {},
   "outputs": [],
   "source": [
    "df.to_csv(\"evals/ft_questions.csv\", index=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eca8e3c8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset has 324 examples\n",
      "Dataset features: {'question': Value(dtype='string', id=None), 'context': Value(dtype='string', id=None)}\n",
      "\n",
      "Sample examples:\n"
     ]
    },
    {
     "data": {
      "application/vnd.microsoft.datawrangler.viewer.v0+json": {
       "columns": [
        {
         "name": "index",
         "rawType": "int64",
         "type": "integer"
        },
        {
         "name": "question",
         "rawType": "object",
         "type": "string"
        },
        {
         "name": "context",
         "rawType": "object",
         "type": "string"
        }
       ],
       "conversionMethod": "pd.DataFrame",
       "ref": "c895ca53-ec90-48b0-a20e-13957de25913",
       "rows": [
        [
         "0",
         "What role does Ragas play in evaluating the performance of applications that use Large Language Models (LLMs)?",
         "---\ntitle: \"Part 1: Introduction to Ragas: The Essential Evaluation Framework for LLM Applications\"\ndate: 2025-04-26T18:00:00-06:00\nlayout: blog\ndescription: \"Explore the essential evaluation framework for LLM applications with Ragas. Learn how to assess performance, ensure accuracy, and improve reliability in Retrieval-Augmented Generation systems.\"\ncategories: [\"AI\", \"RAG\", \"Evaluation\",\"Ragas\"]\ncoverImage: \"https://images.unsplash.com/photo-1593642634367-d91a135587b5?q=80&w=1770&auto=format&fit=crop&ixlib=rb-4.0.3\"\nreadingTime: 7\npublished: true\n---\n\nAs Large Language Models (LLMs) become fundamental components of modern applications, effectively evaluating their performance becomes increasingly critical. Whether you're building a question-answering system, a document retrieval tool, or a conversational agent, you need reliable metrics to assess how well your application performs. This is where Ragas steps in.\n\n## What is Ragas?"
        ],
        [
         "1",
         "Why is it important to have reliable metrics when building systems like question-answering tools or conversational agents with LLMs?",
         "---\ntitle: \"Part 1: Introduction to Ragas: The Essential Evaluation Framework for LLM Applications\"\ndate: 2025-04-26T18:00:00-06:00\nlayout: blog\ndescription: \"Explore the essential evaluation framework for LLM applications with Ragas. Learn how to assess performance, ensure accuracy, and improve reliability in Retrieval-Augmented Generation systems.\"\ncategories: [\"AI\", \"RAG\", \"Evaluation\",\"Ragas\"]\ncoverImage: \"https://images.unsplash.com/photo-1593642634367-d91a135587b5?q=80&w=1770&auto=format&fit=crop&ixlib=rb-4.0.3\"\nreadingTime: 7\npublished: true\n---\n\nAs Large Language Models (LLMs) become fundamental components of modern applications, effectively evaluating their performance becomes increasingly critical. Whether you're building a question-answering system, a document retrieval tool, or a conversational agent, you need reliable metrics to assess how well your application performs. This is where Ragas steps in.\n\n## What is Ragas?"
        ],
        [
         "2",
         "What are some of the key questions that Ragas helps answer when evaluating LLM applications?",
         "## What is Ragas?\n\n[Ragas](https://docs.ragas.io/en/stable/) is an open-source evaluation framework specifically designed for LLM applications, with particular strengths in Retrieval-Augmented Generation (RAG) systems. Unlike traditional NLP evaluation methods, Ragas provides specialized metrics that address the unique challenges of LLM-powered systems.\n\nAt its core, Ragas helps answer crucial questions:\n- Is my application retrieving the right information?\n- Are the responses factually accurate and consistent with the retrieved context?\n- Does the system appropriately address the user's query?\n- How well does my application handle multi-turn conversations?\n\n## Why Evaluate LLM Applications?\n\nLLMs are powerful but imperfect. They can hallucinate facts, misinterpret queries, or generate convincing but incorrect responses. For applications where accuracy and reliability matter—like healthcare, finance, or education—proper evaluation is non-negotiable."
        ]
       ],
       "shape": {
        "columns": 2,
        "rows": 3
       }
      },
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>question</th>\n",
       "      <th>context</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>What role does Ragas play in evaluating the pe...</td>\n",
       "      <td>---\\ntitle: \"Part 1: Introduction to Ragas: Th...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Why is it important to have reliable metrics w...</td>\n",
       "      <td>---\\ntitle: \"Part 1: Introduction to Ragas: Th...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>What are some of the key questions that Ragas ...</td>\n",
       "      <td>## What is Ragas?\\n\\n[Ragas](https://docs.raga...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                            question  \\\n",
       "0  What role does Ragas play in evaluating the pe...   \n",
       "1  Why is it important to have reliable metrics w...   \n",
       "2  What are some of the key questions that Ragas ...   \n",
       "\n",
       "                                             context  \n",
       "0  ---\\ntitle: \"Part 1: Introduction to Ragas: Th...  \n",
       "1  ---\\ntitle: \"Part 1: Introduction to Ragas: Th...  \n",
       "2  ## What is Ragas?\\n\\n[Ragas](https://docs.raga...  "
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "dddd54d430094f5a906d9483abf892e4",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Saving the dataset (0/1 shards):   0%|          | 0/324 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from datasets import Dataset\n",
    "\n",
    "# Convert pandas DataFrame to Huggingface Dataset\n",
    "hf_dataset = Dataset.from_pandas(df)\n",
    "\n",
    "# Display some basic information about the dataset\n",
    "print(f\"Dataset has {len(hf_dataset)} examples\")\n",
    "print(f\"Dataset features: {hf_dataset.features}\")\n",
    "\n",
    "# Show a few examples\n",
    "print(\"\\nSample examples:\")\n",
    "display(hf_dataset.select(range(3)).to_pandas())\n",
    "\n",
    "# Save the dataset to disk (optional)\n",
    "#hf_dataset.save_to_disk(\"ragas_qa_dataset\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "f9e533d5",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "082ffb813f344f0ca18a9cb936c97dc1",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Uploading the dataset shards:   0%|          | 0/1 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5e914dddebb74c8b9ac6e311ecbf0716",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Creating parquet from Arrow format:   0%|          | 0/1 [00:00<?, ?ba/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "CommitInfo(commit_url='https://huggingface.co/datasets/mafzaal/thedataguy_embed_ft/commit/963348381fcb929a7367ff8933b62812a0e9ceb7', commit_message='Upload dataset', commit_description='', oid='963348381fcb929a7367ff8933b62812a0e9ceb7', pr_url=None, repo_url=RepoUrl('https://huggingface.co/datasets/mafzaal/thedataguy_embed_ft', endpoint='https://huggingface.co', repo_type='dataset', repo_id='mafzaal/thedataguy_embed_ft'), pr_revision=None, pr_num=None)"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "hf_dataset.push_to_hub(\n",
    "    repo_id=\"mafzaal/thedataguy_embed_ft\" )"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.13.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}