sinr / datasets.py
Oisin Mac Aodha
First model version
505e401
raw
history blame
7.64 kB
import os
import numpy as np
import json
import pandas as pd
from calendar import monthrange
import torch
import utils
class LocationDataset(torch.utils.data.Dataset):
def __init__(self, locs, labels, classes, class_to_taxa, input_enc, device):
# handle input encoding:
self.input_enc = input_enc
if self.input_enc in ['env', 'sin_cos_env']:
raster = load_env()
else:
raster = None
self.enc = utils.CoordEncoder(input_enc, raster)
# define some properties:
self.locs = locs
self.loc_feats = self.enc.encode(self.locs)
self.labels = labels
self.classes = classes
self.class_to_taxa = class_to_taxa
# useful numbers:
self.num_classes = len(np.unique(labels))
self.input_dim = self.loc_feats.shape[1]
if self.enc.raster is not None:
self.enc.raster = self.enc.raster.to(device)
def __len__(self):
return self.loc_feats.shape[0]
def __getitem__(self, index):
loc_feat = self.loc_feats[index, :]
loc = self.locs[index, :]
class_id = self.labels[index]
return loc_feat, loc, class_id
def load_env():
with open('paths.json', 'r') as f:
paths = json.load(f)
raster = load_context_feats(os.path.join(paths['env'],'bioclim_elevation_scaled.npy'))
return raster
def load_context_feats(data_path):
context_feats = np.load(data_path).astype(np.float32)
context_feats = torch.from_numpy(context_feats)
return context_feats
def load_inat_data(ip_file, taxa_of_interest=None):
print('\nLoading ' + ip_file)
data = pd.read_csv(ip_file)
# remove outliers
num_obs = data.shape[0]
data = data[((data['latitude'] <= 90) & (data['latitude'] >= -90) & (data['longitude'] <= 180) & (data['longitude'] >= -180) )]
if (num_obs - data.shape[0]) > 0:
print(num_obs - data.shape[0], 'items filtered due to invalid locations')
if 'accuracy' in data.columns:
data.drop(['accuracy'], axis=1, inplace=True)
if 'positional_accuracy' in data.columns:
data.drop(['positional_accuracy'], axis=1, inplace=True)
if 'geoprivacy' in data.columns:
data.drop(['geoprivacy'], axis=1, inplace=True)
if 'observed_on' in data.columns:
data.rename(columns = {'observed_on':'date'}, inplace=True)
num_obs_orig = data.shape[0]
data = data.dropna()
size_diff = num_obs_orig - data.shape[0]
if size_diff > 0:
print(size_diff, 'observation(s) with a NaN entry out of' , num_obs_orig, 'removed')
# keep only taxa of interest:
if taxa_of_interest is not None:
num_obs_orig = data.shape[0]
data = data[data['taxon_id'].isin(taxa_of_interest)]
print(num_obs_orig - data.shape[0], 'observation(s) out of' , num_obs_orig, 'from different taxa removed')
print('Number of unique classes {}'.format(np.unique(data['taxon_id'].values).shape[0]))
locs = np.vstack((data['longitude'].values, data['latitude'].values)).T.astype(np.float32)
taxa = data['taxon_id'].values.astype(np.int)
if 'user_id' in data.columns:
users = data['user_id'].values.astype(np.int)
_, users = np.unique(users, return_inverse=True)
elif 'observer_id' in data.columns:
users = data['observer_id'].values.astype(np.int)
_, users = np.unique(users, return_inverse=True)
else:
users = np.ones(taxa.shape[0], dtype=np.int)*-1
# Note - assumes that dates are in format YYYY-MM-DD
years = np.array([int(d_str[:4]) for d_str in data['date'].values])
months = np.array([int(d_str[5:7]) for d_str in data['date'].values])
days = np.array([int(d_str[8:10]) for d_str in data['date'].values])
days_per_month = np.cumsum([0] + [monthrange(2018, mm)[1] for mm in range(1, 12)])
dates = days_per_month[months-1] + days-1
dates = np.round((dates) / 364.0, 4).astype(np.float32)
if 'id' in data.columns:
obs_ids = data['id'].values
elif 'observation_uuid' in data.columns:
obs_ids = data['observation_uuid'].values
return locs, taxa, users, dates, years, obs_ids
def choose_aux_species(current_species, num_aux_species, aux_species_seed):
if num_aux_species == 0:
return []
with open('paths.json', 'r') as f:
paths = json.load(f)
data_dir = paths['train']
taxa_file = os.path.join(data_dir, 'geo_prior_train_meta.json')
with open(taxa_file, 'r') as f:
inat_large_metadata = json.load(f)
aux_species_candidates = [x['taxon_id'] for x in inat_large_metadata]
aux_species_candidates = np.setdiff1d(aux_species_candidates, current_species)
print(f'choosing {num_aux_species} species to add from {len(aux_species_candidates)} candidates')
rng = np.random.default_rng(aux_species_seed)
idx_rand_aux_species = rng.permutation(len(aux_species_candidates))
aux_species = list(aux_species_candidates[idx_rand_aux_species[:num_aux_species]])
return aux_species
def get_taxa_of_interest(species_set='all', num_aux_species=0, aux_species_seed=123, taxa_file_snt=None):
if species_set == 'all':
return None
if species_set == 'snt_birds':
assert taxa_file_snt is not None
with open(taxa_file_snt, 'r') as f: #
taxa_subsets = json.load(f)
taxa_of_interest = list(taxa_subsets['snt_birds'])
else:
raise NotImplementedError
# optionally add some other species back in:
aux_species = choose_aux_species(taxa_of_interest, num_aux_species, aux_species_seed)
taxa_of_interest.extend(aux_species)
return taxa_of_interest
def get_idx_subsample_observations(labels, hard_cap=-1, hard_cap_seed=123):
if hard_cap == -1:
return np.arange(len(labels))
print(f'subsampling (up to) {hard_cap} per class for the training set')
class_counts = {id: 0 for id in np.unique(labels)}
ss_rng = np.random.default_rng(hard_cap_seed)
idx_rand = ss_rng.permutation(len(labels))
idx_ss = []
for i in idx_rand:
class_id = labels[i]
if class_counts[class_id] < hard_cap:
idx_ss.append(i)
class_counts[class_id] += 1
idx_ss = np.sort(idx_ss)
print(f'final training set size: {len(idx_ss)}')
return idx_ss
def get_train_data(params):
with open('paths.json', 'r') as f:
paths = json.load(f)
data_dir = paths['train']
obs_file = os.path.join(data_dir, 'geo_prior_train.csv')
taxa_file = os.path.join(data_dir, 'geo_prior_train_meta.json')
taxa_file_snt = os.path.join(data_dir, 'taxa_subsets.json')
taxa_of_interest = get_taxa_of_interest(params['species_set'], params['num_aux_species'], params['aux_species_seed'], taxa_file_snt)
locs, labels, _, _, _, _ = load_inat_data(obs_file, taxa_of_interest)
unique_taxa, class_ids = np.unique(labels, return_inverse=True)
class_to_taxa = unique_taxa.tolist()
# load class names
class_info_file = json.load(open(taxa_file, 'r'))
class_names_file = [cc['latin_name'] for cc in class_info_file]
taxa_ids_file = [cc['taxon_id'] for cc in class_info_file]
classes = dict(zip(taxa_ids_file, class_names_file))
idx_ss = get_idx_subsample_observations(labels, params['hard_cap_num_per_class'], params['hard_cap_seed'])
locs = torch.from_numpy(np.array(locs)[idx_ss]) # convert to Tensor
labels = torch.from_numpy(np.array(class_ids)[idx_ss])
ds = LocationDataset(locs, labels, classes, class_to_taxa, params['input_enc'], params['device'])
return ds