Spaces:
Running
Running
File size: 14,627 Bytes
9ace58a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import numpy as np
import matplotlib.pyplot as plt
import json
from sklearn.metrics import confusion_matrix
from matplotlib import patches
from matplotlib.collections import PatchCollection
from . import audio_utils as au
def create_box_image(spec, fig, detections_ip, start_time, end_time, duration, params, max_val, hide_axis=True, plot_class_names=False):
# filter detections
stop_time = start_time + duration
detections = []
for bb in detections_ip:
if (bb['start_time'] >= start_time) and (bb['start_time'] < stop_time-0.02): #(bb['end_time'] < end_time):
detections.append(bb)
# create figure
freq_scale = 1000 # turn Hz to kHz
min_freq = params['min_freq']//freq_scale
max_freq = params['max_freq']//freq_scale
y_extent = [0, duration, min_freq, max_freq]
if hide_axis:
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
else:
ax = plt.gca()
plt.imshow(spec, aspect='auto', cmap='plasma', extent=y_extent, vmin=0, vmax=max_val)
boxes = plot_bounding_box_patch_ann(detections, freq_scale, start_time)
ax.add_collection(PatchCollection(boxes, match_original=True))
plt.grid(False)
if plot_class_names:
for ii, bb in enumerate(boxes):
txt = ' '.join([sp[:3] for sp in detections_ip[ii]['class'].split(' ')])
font_info = {'color': 'white', 'size': 10, 'weight': 'bold', 'alpha': bb.get_alpha()}
y_pos = bb.get_xy()[1] + bb.get_height()
if y_pos > (max_freq - 10):
y_pos = max_freq - 10
plt.gca().text(bb.get_xy()[0], y_pos, txt, fontdict=font_info)
def save_ann_spec(op_path, spec, min_freq, max_freq, duration, start_time, title_text='', anns=None):
# create figure and plot boxes
freq_scale = 1000 # turn Hz to kHz
min_freq = min_freq//freq_scale
max_freq = max_freq//freq_scale
y_extent = [0, duration, min_freq, max_freq]
plt.close('all')
fig = plt.figure(0, figsize=(spec.shape[1]/100, spec.shape[0]/100), dpi=100)
plt.imshow(spec, aspect='auto', cmap='plasma', extent=y_extent, vmin=0, vmax=spec.max()*1.1)
plt.ylabel('Freq - kHz')
plt.xlabel('Time - secs')
if title_text != '':
plt.title(title_text)
plt.tight_layout()
if anns is not None:
# drawing bounding boxes and class names
boxes = plot_bounding_box_patch_ann(anns, freq_scale, start_time)
plt.gca().add_collection(PatchCollection(boxes, match_original=True))
for ii, bb in enumerate(boxes):
txt = ' '.join([sp[:3] for sp in anns[ii]['class'].split(' ')])
font_info = {'color': 'white', 'size': 10, 'weight': 'bold', 'alpha': bb.get_alpha()}
y_pos = bb.get_xy()[1] + bb.get_height()
if y_pos > (max_freq - 10):
y_pos = max_freq - 10
plt.gca().text(bb.get_xy()[0], y_pos, txt, fontdict=font_info)
print('Saving figure to:', op_path)
plt.savefig(op_path)
def plot_pts(fig_id, feats, class_names, colors, marker_size=4.0, plot_legend=False):
plt.figure(fig_id)
un_class, labels = np.unique(class_names, return_inverse=True)
un_labels = np.unique(labels)
if un_labels.shape[0] > len(colors):
colors = [plt.cm.jet(float(ii)/un_labels.shape[0]) for ii in un_labels]
for ii, u in enumerate(un_labels):
inds = np.where(labels==u)[0]
plt.scatter(feats[inds, 0], feats[inds, 1], c=colors[ii], label=str(un_class[ii]), s=marker_size)
if plot_legend:
plt.legend()
plt.xticks([])
plt.yticks([])
plt.title('downsampled features')
def plot_bounding_box_patch(pred, freq_scale, ecolor='w'):
patch_collect = []
for bb in range(len(pred['start_times'])):
xx = pred['start_times'][bb]
ww = pred['end_times'][bb] - pred['start_times'][bb]
yy = pred['low_freqs'][bb] / freq_scale
hh = (pred['high_freqs'][bb] - pred['low_freqs'][bb]) / freq_scale
if 'det_probs' in pred.keys():
alpha_val = pred['det_probs'][bb]
else:
alpha_val = 1.0
patch_collect.append(patches.Rectangle((xx, yy), ww, hh, linewidth=1,
edgecolor=ecolor, facecolor='none', alpha=alpha_val))
return patch_collect
def plot_bounding_box_patch_ann(anns, freq_scale, start_time):
patch_collect = []
for aa in range(len(anns)):
xx = anns[aa]['start_time'] - start_time
ww = anns[aa]['end_time'] - anns[aa]['start_time']
yy = anns[aa]['low_freq'] / freq_scale
hh = (anns[aa]['high_freq'] - anns[aa]['low_freq']) / freq_scale
if 'det_prob' in anns[aa]:
alpha = anns[aa]['det_prob']
else:
alpha = 1.0
patch_collect.append(patches.Rectangle((xx,yy), ww, hh, linewidth=1,
edgecolor='w', facecolor='none', alpha=alpha))
return patch_collect
def plot_spec(spec, sampling_rate, duration, gt, pred, params, plot_title,
op_file_name, pred_2d_hm, plot_boxes=True, fixed_aspect=True):
if fixed_aspect:
# ouptut image will be this width irrespective of the duration of the audio file
width = 12
else:
width = 12*duration
fig = plt.figure(1, figsize=(width, 8))
ax0 = plt.axes([0.05, 0.65, 0.9, 0.30]) # l b w h
ax1 = plt.axes([0.05, 0.33, 0.9, 0.30])
ax2 = plt.axes([0.05, 0.01, 0.9, 0.30])
freq_scale = 1000 # turn Hz in kHz
#duration = au.x_coords_to_time(spec.shape[1], sampling_rate, params['fft_win_length'], params['fft_overlap'])
y_extent = [0, duration, params['min_freq']//freq_scale, params['max_freq']//freq_scale]
# plot gt boxes
ax0.imshow(spec, aspect='auto', cmap='plasma', extent=y_extent)
ax0.xaxis.set_ticklabels([])
font_info = {'color': 'white', 'size': 12, 'weight': 'bold'}
ax0.text(0, params['min_freq']//freq_scale, 'Ground Truth', fontdict=font_info)
plt.grid(False)
if plot_boxes:
boxes = plot_bounding_box_patch(gt, freq_scale)
ax0.add_collection(PatchCollection(boxes, match_original=True))
for ii, bb in enumerate(boxes):
class_id = int(gt['class_ids'][ii])
if class_id < 0:
txt = params['generic_class'][0]
else:
txt = params['class_names_short'][class_id]
font_info = {'color': 'white', 'size': 10, 'weight': 'bold', 'alpha': bb.get_alpha()}
y_pos = bb.get_xy()[1] + bb.get_height()
ax0.text(bb.get_xy()[0], y_pos, txt, fontdict=font_info)
# plot predicted boxes
ax1.imshow(spec, aspect='auto', cmap='plasma', extent=y_extent)
ax1.xaxis.set_ticklabels([])
font_info = {'color': 'white', 'size': 12, 'weight': 'bold'}
ax1.text(0, params['min_freq']//freq_scale, 'Prediction', fontdict=font_info)
plt.grid(False)
if plot_boxes:
boxes = plot_bounding_box_patch(pred, freq_scale)
ax1.add_collection(PatchCollection(boxes, match_original=True))
for ii, bb in enumerate(boxes):
if pred['class_probs'].shape[0] > len(params['class_names_short']):
class_id = pred['class_probs'][:-1, ii].argmax()
else:
class_id = pred['class_probs'][:, ii].argmax()
txt = params['class_names_short'][class_id]
font_info = {'color': 'white', 'size': 10, 'weight': 'bold', 'alpha': bb.get_alpha()}
y_pos = bb.get_xy()[1] + bb.get_height()
ax1.text(bb.get_xy()[0], y_pos, txt, fontdict=font_info)
# plot 2D heatmap
if pred_2d_hm is not None:
min_val = 0.0 if pred_2d_hm.min() > 0.0 else pred_2d_hm.min()
max_val = 1.0 if pred_2d_hm.max() < 1.0 else pred_2d_hm.max()
ax2.imshow(pred_2d_hm, aspect='auto', cmap='plasma', extent=y_extent, clim=[min_val, max_val])
#ax2.xaxis.set_ticklabels([])
font_info = {'color': 'white', 'size': 12, 'weight': 'bold'}
ax2.text(0, params['min_freq']//freq_scale, 'Heatmap', fontdict=font_info)
plt.grid(False)
plt.suptitle(plot_title)
if op_file_name is not None:
fig.savefig(op_file_name)
plt.close(1)
def plot_pr_curve(op_dir, plt_title, file_name, results, file_type='png', title_text=''):
precision = results['precision']
recall = results['recall']
avg_prec = results['avg_prec']
plt.figure(0, figsize=(10,8))
plt.plot(recall, precision)
plt.ylabel('Precision', fontsize=20)
plt.xlabel('Recall', fontsize=20)
if title_text != '':
plt.title(title_text, fontdict={'fontsize': 28})
else:
plt.title(plt_title + ' {:.3f}\n'.format(avg_prec))
plt.xlim(0,1.02)
plt.ylim(0,1.02)
plt.grid(True)
plt.tight_layout()
plt.savefig(op_dir + file_name + '.' + file_type)
plt.close(0)
def plot_pr_curve_class(op_dir, plt_title, file_name, results, file_type='png', title_text=''):
plt.figure(0, figsize=(10,8))
plt.ylabel('Precision', fontsize=20)
plt.xlabel('Recall', fontsize=20)
plt.xlim(0,1.02)
plt.ylim(0,1.02)
plt.grid(True)
linestyles = ['-', ':', '--']
markers = ['o', 'v', '>', '^', '<', 's', 'P', 'X', '*']
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
# plot the PR curves
for ii, rr in enumerate(results['class_pr']):
class_name = ' '.join([sp[:3] for sp in rr['name'].split(' ')])
cur_color = colors[int(ii%10)]
plt.plot(rr['recall'], rr['precision'], label=class_name, color=cur_color,
linestyle=linestyles[int(ii//10)], lw=2.5)
#print(class_name)
# plot the location of the confidence threshold values
for jj, tt in enumerate(rr['thresholds']):
ind = rr['thresholds_inds'][jj]
if ind > -1:
plt.plot(rr['recall'][ind], rr['precision'][ind], markers[jj],
color=cur_color, ms=10)
#print(np.round(tt,2), np.round(rr['recall'][ind],3), np.round(rr['precision'][ind],3))
if title_text != '':
plt.title(title_text, fontdict={'fontsize': 28})
else:
plt.title(plt_title + ' {:.3f}\n'.format(results['avg_prec_class']))
plt.legend(loc='lower left', prop={'size': 14})
plt.tight_layout()
plt.savefig(op_dir + file_name + '.' + file_type)
plt.close(0)
def plot_confusion_matrix(op_dir, op_file, gt, pred, file_acc, class_names_long, verbose=False, file_type='png', title_text=''):
# shorten the class names for plotting
class_names = []
for cc in class_names_long:
class_name_sm = ''.join([cc_sm[:3] + ' ' for cc_sm in cc.split(' ')])[:-1]
class_names.append(class_name_sm)
num_classes = len(class_names)
cm = confusion_matrix(gt, pred, labels=np.arange(num_classes)).astype(np.float32)
cm_norm = cm.sum(1)
valid_inds = np.where(cm_norm > 0)[0]
cm[valid_inds, :] = cm[valid_inds, :] / cm_norm[valid_inds][..., np.newaxis]
cm[np.where(cm_norm ==- 0)[0], :] = np.nan
if verbose:
print('Per class accuracy:')
str_len = np.max([len(cc) for cc in class_names_long]) + 5
accs = np.diag(cm)
for ii, cc in enumerate(class_names_long):
if np.isnan(accs[ii]):
print(str(ii).ljust(5) + cc.ljust(str_len))
else:
print(str(ii).ljust(5) + cc.ljust(str_len) + '{:.2f}'.format(accs[ii]*100))
plt.figure(0, figsize=(10,8))
plt.imshow(cm, vmin=0, vmax=1, cmap='plasma')
plt.colorbar()
plt.xticks(np.arange(cm.shape[1]), class_names, rotation='vertical')
plt.yticks(np.arange(cm.shape[0]), class_names)
plt.xlabel('Predicted', fontsize=20)
plt.ylabel('Ground Truth', fontsize=20)
if title_text != '':
plt.title(title_text, fontdict={'fontsize': 28})
else:
plt.title(op_file + ' {:.3f}\n'.format(file_acc))
plt.tight_layout()
plt.savefig(op_dir + op_file + '.' + file_type)
plt.close('all')
class LossPlotter(object):
def __init__(self, op_file_name, duration, labels, ylim, class_names, axis_labels=None, logy=False):
self.reset()
self.op_file_name = op_file_name
self.duration = duration # length of x axis
self.labels = labels
self.ylim = ylim
self.class_names = class_names
self.axis_labels = axis_labels
self.logy = logy
def reset(self):
self.epochs = []
self.vals = []
def update_and_save(self, epoch, val, gt=None, pred=None):
self.epochs.append(epoch)
self.vals.append(val)
self.save_plot()
self.save_json()
if gt is not None:
self.save_confusion_matrix(gt, pred)
def save_plot(self):
linestyles = ['-', ':', '--']
plt.figure(0, figsize=(8,5))
for ii in range(len(self.vals[0])):
l_vals = [vv[ii] for vv in self.vals]
plt.plot(self.epochs, l_vals, label=self.labels[ii], linestyle=linestyles[int(ii//10)])
plt.xlim(0, np.maximum(self.duration, len(self.vals)))
if self.ylim is not None:
plt.ylim(self.ylim[0], self.ylim[1])
if self.axis_labels is not None:
plt.xlabel(self.axis_labels[0])
plt.ylabel(self.axis_labels[1])
if self.logy:
plt.gca().set_yscale('log')
plt.grid(True)
plt.legend(bbox_to_anchor=(1.01, 1), loc='upper left', borderaxespad=0.0)
plt.tight_layout()
plt.savefig(self.op_file_name)
plt.close(0)
def save_json(self):
data = {}
data['epochs'] = self.epochs
for ii in range(len(self.vals[0])):
data[self.labels[ii]] = [round(vv[ii],4) for vv in self.vals]
with open(self.op_file_name[:-4] + '.json', 'w') as da:
json.dump(data, da, indent=2)
def save_confusion_matrix(self, gt, pred):
plt.figure(0)
cm = confusion_matrix(gt, pred, np.arange(len(self.class_names))).astype(np.float32)
cm_norm = cm.sum(1)
valid_inds = np.where(cm_norm > 0)[0]
cm[valid_inds, :] = cm[valid_inds, :] / cm_norm[valid_inds][..., np.newaxis]
plt.imshow(cm, vmin=0, vmax=1, cmap='plasma')
plt.colorbar()
plt.xticks(np.arange(cm.shape[1]), self.class_names, rotation='vertical')
plt.yticks(np.arange(cm.shape[0]), self.class_names)
plt.xlabel('Predicted')
plt.ylabel('Ground Truth')
plt.tight_layout()
plt.savefig(self.op_file_name[:-4] + '_cm.png')
plt.close(0)
|