File size: 15,699 Bytes
9ace58a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import numpy as np
import matplotlib.pyplot as plt
import os
import torch
import torch.nn.functional as F
from torch.optim.lr_scheduler import CosineAnnealingLR
import json
import argparse

import sys
sys.path.append(os.path.join('..', '..'))

import bat_detect.detector.parameters as parameters
import bat_detect.detector.models as models
import bat_detect.detector.post_process as pp
import bat_detect.utils.plot_utils as pu

import bat_detect.train.audio_dataloader as adl
import bat_detect.train.evaluate as evl
import bat_detect.train.train_utils as tu
import bat_detect.train.train_split as ts
import bat_detect.train.losses as losses

import warnings
warnings.filterwarnings("ignore", category=UserWarning)


def save_images_batch(model, data_loader, params):
    print('\nsaving images ...')

    is_train_state = data_loader.dataset.is_train
    data_loader.dataset.is_train = False
    data_loader.dataset.return_spec_for_viz = True
    model.eval()

    ind = 0  # first image in each batch
    with torch.no_grad():
        for batch_idx, inputs in enumerate(data_loader):
            data    = inputs['spec'].to(params['device'])
            outputs = model(data)

            spec_viz = inputs['spec_for_viz'].data.cpu().numpy()
            orig_index = inputs['file_id'][ind]
            plot_title = data_loader.dataset.data_anns[orig_index]['id']
            op_file_name = params['op_im_dir_test'] + data_loader.dataset.data_anns[orig_index]['id'] + '.jpg'
            save_image(spec_viz, outputs, ind, inputs, params, op_file_name, plot_title)

    data_loader.dataset.is_train = is_train_state
    data_loader.dataset.return_spec_for_viz = False


def save_image(spec_viz, outputs, ind, inputs, params, op_file_name, plot_title):
    pred_nms, _ = pp.run_nms(outputs, params, inputs['sampling_rate'].float())
    pred_hm  = outputs['pred_det'][ind, 0, :].data.cpu().numpy()
    spec_viz = spec_viz[ind, 0, :]
    gt       = parse_gt_data(inputs)[ind]
    sampling_rate = inputs['sampling_rate'][ind].item()
    duration = inputs['duration'][ind].item()

    pu.plot_spec(spec_viz, sampling_rate, duration, gt, pred_nms[ind],
                 params, plot_title, op_file_name, pred_hm, plot_boxes=True, fixed_aspect=False)


def loss_fun(outputs, gt_det, gt_size, gt_class, det_criterion, params, class_inv_freq):

    # detection loss
    loss = params['det_loss_weight']*det_criterion(outputs['pred_det'], gt_det)

    # bounding box size loss
    loss += params['size_loss_weight']*losses.bbox_size_loss(outputs['pred_size'], gt_size)

    # classification loss
    valid_mask = (gt_class[:, :-1, :, :].sum(1) > 0).float().unsqueeze(1)
    p_class = outputs['pred_class'][:, :-1, :]
    loss += params['class_loss_weight']*det_criterion(p_class, gt_class[:, :-1, :], valid_mask=valid_mask)

    return loss


def train(model, epoch, data_loader, det_criterion, optimizer, scheduler, params):

    model.train()

    train_loss = tu.AverageMeter()
    class_inv_freq = torch.from_numpy(np.array(params['class_inv_freq'], dtype=np.float32)).to(params['device'])
    class_inv_freq = class_inv_freq.unsqueeze(0).unsqueeze(2).unsqueeze(2)

    print('\nEpoch', epoch)
    for batch_idx, inputs in enumerate(data_loader):

        data     = inputs['spec'].to(params['device'])
        gt_det   = inputs['y_2d_det'].to(params['device'])
        gt_size  = inputs['y_2d_size'].to(params['device'])
        gt_class = inputs['y_2d_classes'].to(params['device'])

        optimizer.zero_grad()
        outputs = model(data)

        loss = loss_fun(outputs, gt_det, gt_size, gt_class, det_criterion, params, class_inv_freq)

        train_loss.update(loss.item(), data.shape[0])
        loss.backward()
        optimizer.step()
        scheduler.step()

        if batch_idx % 50 == 0 and batch_idx != 0:
            print('[{}/{}]\tLoss: {:.4f}'.format(
                  batch_idx * len(data), len(data_loader.dataset), train_loss.avg))

    print('Train loss          : {:.4f}'.format(train_loss.avg))

    res = {}
    res['train_loss'] = float(train_loss.avg)
    return res


def test(model, epoch, data_loader, det_criterion, params):
    model.eval()
    predictions = []
    ground_truths = []
    test_loss = tu.AverageMeter()

    class_inv_freq = torch.from_numpy(np.array(params['class_inv_freq'], dtype=np.float32)).to(params['device'])
    class_inv_freq = class_inv_freq.unsqueeze(0).unsqueeze(2).unsqueeze(2)

    with torch.no_grad():
        for batch_idx, inputs in enumerate(data_loader):

            data    = inputs['spec'].to(params['device'])
            gt_det  = inputs['y_2d_det'].to(params['device'])
            gt_size = inputs['y_2d_size'].to(params['device'])
            gt_class = inputs['y_2d_classes'].to(params['device'])

            outputs = model(data)

            # if the model needs a fixed sized intput run this
            # data = torch.cat(torch.split(data, int(params['spec_train_width']*params['resize_factor']), 3), 0)
            # outputs = model(data)
            # for kk in ['pred_det', 'pred_size', 'pred_class']:
            #     outputs[kk] = torch.cat([oo for oo in outputs[kk]], 2).unsqueeze(0)

            if params['save_test_image_during_train'] and batch_idx == 0:
                # for visualization - save the first prediction
                ind = 0
                orig_index = inputs['file_id'][ind]
                plot_title = data_loader.dataset.data_anns[orig_index]['id']
                op_file_name = params['op_im_dir'] + str(orig_index.item()).zfill(4) + '_' + str(epoch).zfill(4) + '_pred.jpg'
                save_image(data, outputs, ind, inputs, params, op_file_name, plot_title)

            loss = loss_fun(outputs, gt_det, gt_size, gt_class, det_criterion, params, class_inv_freq)
            test_loss.update(loss.item(), data.shape[0])

            # do NMS
            pred_nms, _ = pp.run_nms(outputs, params, inputs['sampling_rate'].float())
            predictions.extend(pred_nms)

            ground_truths.extend(parse_gt_data(inputs))

    res_det = evl.evaluate_predictions(ground_truths, predictions, params['class_names'],
                                       params['detection_overlap'], params['ignore_start_end'])

    print('\nTest loss          : {:.4f}'.format(test_loss.avg))
    print('Rec at 0.95  (det) : {:.4f}'.format(res_det['rec_at_x']))
    print('Avg prec     (cls) : {:.4f}'.format(res_det['avg_prec']))
    print('File acc     (cls) : {:.2f} - for {} out of {}'.format(res_det['file_acc'],
          res_det['num_valid_files'], res_det['num_total_files']))
    print('Cls Avg prec (cls) : {:.4f}'.format(res_det['avg_prec_class']))

    print('\nPer class average precision')
    str_len = np.max([len(rs['name']) for rs in res_det['class_pr']]) + 5
    for cc, rs in enumerate(res_det['class_pr']):
        if rs['num_gt'] > 0:
            print(str(cc).ljust(5) + rs['name'].ljust(str_len) + '{:.4f}'.format(rs['avg_prec']))

    res = {}
    res['test_loss'] = float(test_loss.avg)

    return res_det, res


def parse_gt_data(inputs):
    # reads the torch arrays into a dictionary of numpy arrays, taking care to
    # remove padding data i.e. not valid ones
    keys = ['start_times', 'end_times', 'low_freqs', 'high_freqs', 'class_ids', 'individual_ids']
    batch_data = []
    for ind in range(inputs['start_times'].shape[0]):
        is_valid = inputs['is_valid'][ind]==1
        gt = {}
        for kk in keys:
            gt[kk] = inputs[kk][ind][is_valid].numpy().astype(np.float32)
        gt['duration'] = inputs['duration'][ind].item()
        gt['file_id'] = inputs['file_id'][ind].item()
        gt['class_id_file'] = inputs['class_id_file'][ind].item()
        batch_data.append(gt)
    return batch_data


def select_model(params):
    num_classes = len(params['class_names'])
    if params['model_name'] == 'Net2DFast':
        model = models.Net2DFast(params['num_filters'], num_classes=num_classes,
                                 emb_dim=params['emb_dim'], ip_height=params['ip_height'],
                                 resize_factor=params['resize_factor'])
    elif params['model_name'] == 'Net2DFastNoAttn':
        model = models.Net2DFastNoAttn(params['num_filters'], num_classes=num_classes,
                                 emb_dim=params['emb_dim'], ip_height=params['ip_height'],
                                 resize_factor=params['resize_factor'])
    elif params['model_name'] == 'Net2DFastNoCoordConv':
        model = models.Net2DFastNoCoordConv(params['num_filters'], num_classes=num_classes,
                                 emb_dim=params['emb_dim'], ip_height=params['ip_height'],
                                 resize_factor=params['resize_factor'])    
    else:
        print('No valid network specified')
    return model


if __name__ == "__main__":

    plt.close('all')

    params = parameters.get_params(True)

    if torch.cuda.is_available():
        params['device'] = 'cuda'
    else:
        params['device'] = 'cpu'

    # setup arg parser and populate it with exiting parameters - will not work with lists
    parser = argparse.ArgumentParser()
    parser.add_argument('data_dir', type=str,
        help='Path to root of datasets')
    parser.add_argument('ann_dir', type=str,
        help='Path to extracted annotations')
    parser.add_argument('--train_split', type=str, default='diff',  # diff, same
        help='Which train split to use')
    parser.add_argument('--notes', type=str, default='',
        help='Notes to save in text file')
    parser.add_argument('--do_not_save_images', action='store_false',
        help='Do not save images at the end of training')
    parser.add_argument('--standardize_classs_names_ip', type=str,
        default='Rhinolophus ferrumequinum;Rhinolophus hipposideros',
        help='Will set low and high frequency the same for these classes. Separate names with ";"')
    for key, val in params.items():
        parser.add_argument('--'+key, type=type(val), default=val)
    params = vars(parser.parse_args())

    # save notes file
    if params['notes'] != '':
        tu.write_notes_file(params['experiment'] + 'notes.txt', params['notes'])

    # load the training and test meta data - there are different splits defined
    train_sets, test_sets = ts.get_train_test_data(params['ann_dir'], params['data_dir'], params['train_split'])
    train_sets_no_path, test_sets_no_path = ts.get_train_test_data('', '', params['train_split'])

    # keep track of what we have trained on
    params['train_sets'] = train_sets_no_path
    params['test_sets'] = test_sets_no_path

    # load train annotations - merge them all together
    print('\nTraining on:')
    for tt in train_sets:
        print(tt['ann_path'])
    classes_to_ignore = params['classes_to_ignore']+params['generic_class']
    data_train, params['class_names'], params['class_inv_freq'] = \
        tu.load_set_of_anns(train_sets, classes_to_ignore, params['events_of_interest'], params['convert_to_genus'])
    params['genus_names'], params['genus_mapping'] = tu.get_genus_mapping(params['class_names'])
    params['class_names_short'] = tu.get_short_class_names(params['class_names'])

    # standardize the low and high frequency value for specified classes
    params['standardize_classs_names'] = params['standardize_classs_names_ip'].split(';')
    for cc in params['standardize_classs_names']:
        if cc in params['class_names']:
            data_train = tu.standardize_low_freq(data_train, cc)
        else:
            print(cc, 'not found')

    # train loader
    train_dataset = adl.AudioLoader(data_train, params, is_train=True)
    train_loader  = torch.utils.data.DataLoader(train_dataset, batch_size=params['batch_size'],
                    shuffle=True, num_workers=params['num_workers'], pin_memory=True)


    # test set
    print('\nTesting on:')
    for tt in test_sets:
        print(tt['ann_path'])
    data_test, _, _ = tu.load_set_of_anns(test_sets, classes_to_ignore, params['events_of_interest'], params['convert_to_genus'])
    data_train = tu.remove_dupes(data_train, data_test)
    test_dataset = adl.AudioLoader(data_test, params, is_train=False)
    # batch size of 1 because of variable file length
    test_loader  = torch.utils.data.DataLoader(test_dataset, batch_size=1,
                   shuffle=False, num_workers=params['num_workers'], pin_memory=True)


    inputs_train = next(iter(train_loader))
    # TODO remove params['ip_height'], this is just legacy
    params['ip_height'] = int(params['spec_height']*params['resize_factor'])
    print('\ntrain batch spec size :', inputs_train['spec'].shape)
    print('class target size     :', inputs_train['y_2d_classes'].shape)

    # select network
    model = select_model(params)
    model = model.to(params['device'])

    optimizer = torch.optim.Adam(model.parameters(), lr=params['lr'])
    #optimizer = torch.optim.SGD(model.parameters(), lr=params['lr'], momentum=0.9)
    scheduler = CosineAnnealingLR(optimizer, params['num_epochs'] * len(train_loader))
    if params['train_loss'] == 'mse':
        det_criterion = losses.mse_loss
    elif params['train_loss'] == 'focal':
        det_criterion = losses.focal_loss

    # save parameters to file
    with open(params['experiment'] + 'params.json', 'w') as da:
        json.dump(params, da, indent=2, sort_keys=True)

    # plotting
    train_plt_ls = pu.LossPlotter(params['experiment'] + 'train_loss.png', params['num_epochs']+1,
                                  ['train_loss'], None, None, ['epoch', 'train_loss'], logy=True)
    test_plt_ls = pu.LossPlotter(params['experiment'] + 'test_loss.png', params['num_epochs']+1,
                                  ['test_loss'], None, None, ['epoch', 'test_loss'], logy=True)
    test_plt = pu.LossPlotter(params['experiment'] + 'test.png', params['num_epochs']+1,
                                  ['avg_prec', 'rec_at_x', 'avg_prec_class', 'file_acc', 'top_class'], [0,1], None, ['epoch', ''])
    test_plt_class = pu.LossPlotter(params['experiment'] + 'test_avg_prec.png', params['num_epochs']+1,
                                     params['class_names_short'], [0,1], params['class_names_short'], ['epoch', 'avg_prec'])


    #
    # main train loop
    for epoch in range(0, params['num_epochs']+1):

        train_loss = train(model, epoch, train_loader, det_criterion, optimizer, scheduler, params)
        train_plt_ls.update_and_save(epoch, [train_loss['train_loss']])

        if epoch % params['num_eval_epochs'] == 0:
            # detection accuracy on test set
            test_res, test_loss = test(model, epoch, test_loader, det_criterion, params)
            test_plt_ls.update_and_save(epoch, [test_loss['test_loss']])
            test_plt.update_and_save(epoch, [test_res['avg_prec'], test_res['rec_at_x'],
                                             test_res['avg_prec_class'], test_res['file_acc'], test_res['top_class']['avg_prec']])
            test_plt_class.update_and_save(epoch, [rs['avg_prec'] for rs in test_res['class_pr']])
            pu.plot_pr_curve_class(params['experiment'] , 'test_pr', 'test_pr', test_res)


            # save trained model
            print('saving model to: ' + params['model_file_name'])
            op_state = {'epoch': epoch + 1,
                        'state_dict': model.state_dict(),
                         #'optimizer' : optimizer.state_dict(),
                        'params' : params}
            torch.save(op_state, params['model_file_name'])


    # save an image with associated prediction for each batch in the test set
    if not args['do_not_save_images']:
        save_images_batch(model, test_loader, params)