Spaces:
Running
Running
File size: 15,699 Bytes
9ace58a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import numpy as np
import matplotlib.pyplot as plt
import os
import torch
import torch.nn.functional as F
from torch.optim.lr_scheduler import CosineAnnealingLR
import json
import argparse
import sys
sys.path.append(os.path.join('..', '..'))
import bat_detect.detector.parameters as parameters
import bat_detect.detector.models as models
import bat_detect.detector.post_process as pp
import bat_detect.utils.plot_utils as pu
import bat_detect.train.audio_dataloader as adl
import bat_detect.train.evaluate as evl
import bat_detect.train.train_utils as tu
import bat_detect.train.train_split as ts
import bat_detect.train.losses as losses
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
def save_images_batch(model, data_loader, params):
print('\nsaving images ...')
is_train_state = data_loader.dataset.is_train
data_loader.dataset.is_train = False
data_loader.dataset.return_spec_for_viz = True
model.eval()
ind = 0 # first image in each batch
with torch.no_grad():
for batch_idx, inputs in enumerate(data_loader):
data = inputs['spec'].to(params['device'])
outputs = model(data)
spec_viz = inputs['spec_for_viz'].data.cpu().numpy()
orig_index = inputs['file_id'][ind]
plot_title = data_loader.dataset.data_anns[orig_index]['id']
op_file_name = params['op_im_dir_test'] + data_loader.dataset.data_anns[orig_index]['id'] + '.jpg'
save_image(spec_viz, outputs, ind, inputs, params, op_file_name, plot_title)
data_loader.dataset.is_train = is_train_state
data_loader.dataset.return_spec_for_viz = False
def save_image(spec_viz, outputs, ind, inputs, params, op_file_name, plot_title):
pred_nms, _ = pp.run_nms(outputs, params, inputs['sampling_rate'].float())
pred_hm = outputs['pred_det'][ind, 0, :].data.cpu().numpy()
spec_viz = spec_viz[ind, 0, :]
gt = parse_gt_data(inputs)[ind]
sampling_rate = inputs['sampling_rate'][ind].item()
duration = inputs['duration'][ind].item()
pu.plot_spec(spec_viz, sampling_rate, duration, gt, pred_nms[ind],
params, plot_title, op_file_name, pred_hm, plot_boxes=True, fixed_aspect=False)
def loss_fun(outputs, gt_det, gt_size, gt_class, det_criterion, params, class_inv_freq):
# detection loss
loss = params['det_loss_weight']*det_criterion(outputs['pred_det'], gt_det)
# bounding box size loss
loss += params['size_loss_weight']*losses.bbox_size_loss(outputs['pred_size'], gt_size)
# classification loss
valid_mask = (gt_class[:, :-1, :, :].sum(1) > 0).float().unsqueeze(1)
p_class = outputs['pred_class'][:, :-1, :]
loss += params['class_loss_weight']*det_criterion(p_class, gt_class[:, :-1, :], valid_mask=valid_mask)
return loss
def train(model, epoch, data_loader, det_criterion, optimizer, scheduler, params):
model.train()
train_loss = tu.AverageMeter()
class_inv_freq = torch.from_numpy(np.array(params['class_inv_freq'], dtype=np.float32)).to(params['device'])
class_inv_freq = class_inv_freq.unsqueeze(0).unsqueeze(2).unsqueeze(2)
print('\nEpoch', epoch)
for batch_idx, inputs in enumerate(data_loader):
data = inputs['spec'].to(params['device'])
gt_det = inputs['y_2d_det'].to(params['device'])
gt_size = inputs['y_2d_size'].to(params['device'])
gt_class = inputs['y_2d_classes'].to(params['device'])
optimizer.zero_grad()
outputs = model(data)
loss = loss_fun(outputs, gt_det, gt_size, gt_class, det_criterion, params, class_inv_freq)
train_loss.update(loss.item(), data.shape[0])
loss.backward()
optimizer.step()
scheduler.step()
if batch_idx % 50 == 0 and batch_idx != 0:
print('[{}/{}]\tLoss: {:.4f}'.format(
batch_idx * len(data), len(data_loader.dataset), train_loss.avg))
print('Train loss : {:.4f}'.format(train_loss.avg))
res = {}
res['train_loss'] = float(train_loss.avg)
return res
def test(model, epoch, data_loader, det_criterion, params):
model.eval()
predictions = []
ground_truths = []
test_loss = tu.AverageMeter()
class_inv_freq = torch.from_numpy(np.array(params['class_inv_freq'], dtype=np.float32)).to(params['device'])
class_inv_freq = class_inv_freq.unsqueeze(0).unsqueeze(2).unsqueeze(2)
with torch.no_grad():
for batch_idx, inputs in enumerate(data_loader):
data = inputs['spec'].to(params['device'])
gt_det = inputs['y_2d_det'].to(params['device'])
gt_size = inputs['y_2d_size'].to(params['device'])
gt_class = inputs['y_2d_classes'].to(params['device'])
outputs = model(data)
# if the model needs a fixed sized intput run this
# data = torch.cat(torch.split(data, int(params['spec_train_width']*params['resize_factor']), 3), 0)
# outputs = model(data)
# for kk in ['pred_det', 'pred_size', 'pred_class']:
# outputs[kk] = torch.cat([oo for oo in outputs[kk]], 2).unsqueeze(0)
if params['save_test_image_during_train'] and batch_idx == 0:
# for visualization - save the first prediction
ind = 0
orig_index = inputs['file_id'][ind]
plot_title = data_loader.dataset.data_anns[orig_index]['id']
op_file_name = params['op_im_dir'] + str(orig_index.item()).zfill(4) + '_' + str(epoch).zfill(4) + '_pred.jpg'
save_image(data, outputs, ind, inputs, params, op_file_name, plot_title)
loss = loss_fun(outputs, gt_det, gt_size, gt_class, det_criterion, params, class_inv_freq)
test_loss.update(loss.item(), data.shape[0])
# do NMS
pred_nms, _ = pp.run_nms(outputs, params, inputs['sampling_rate'].float())
predictions.extend(pred_nms)
ground_truths.extend(parse_gt_data(inputs))
res_det = evl.evaluate_predictions(ground_truths, predictions, params['class_names'],
params['detection_overlap'], params['ignore_start_end'])
print('\nTest loss : {:.4f}'.format(test_loss.avg))
print('Rec at 0.95 (det) : {:.4f}'.format(res_det['rec_at_x']))
print('Avg prec (cls) : {:.4f}'.format(res_det['avg_prec']))
print('File acc (cls) : {:.2f} - for {} out of {}'.format(res_det['file_acc'],
res_det['num_valid_files'], res_det['num_total_files']))
print('Cls Avg prec (cls) : {:.4f}'.format(res_det['avg_prec_class']))
print('\nPer class average precision')
str_len = np.max([len(rs['name']) for rs in res_det['class_pr']]) + 5
for cc, rs in enumerate(res_det['class_pr']):
if rs['num_gt'] > 0:
print(str(cc).ljust(5) + rs['name'].ljust(str_len) + '{:.4f}'.format(rs['avg_prec']))
res = {}
res['test_loss'] = float(test_loss.avg)
return res_det, res
def parse_gt_data(inputs):
# reads the torch arrays into a dictionary of numpy arrays, taking care to
# remove padding data i.e. not valid ones
keys = ['start_times', 'end_times', 'low_freqs', 'high_freqs', 'class_ids', 'individual_ids']
batch_data = []
for ind in range(inputs['start_times'].shape[0]):
is_valid = inputs['is_valid'][ind]==1
gt = {}
for kk in keys:
gt[kk] = inputs[kk][ind][is_valid].numpy().astype(np.float32)
gt['duration'] = inputs['duration'][ind].item()
gt['file_id'] = inputs['file_id'][ind].item()
gt['class_id_file'] = inputs['class_id_file'][ind].item()
batch_data.append(gt)
return batch_data
def select_model(params):
num_classes = len(params['class_names'])
if params['model_name'] == 'Net2DFast':
model = models.Net2DFast(params['num_filters'], num_classes=num_classes,
emb_dim=params['emb_dim'], ip_height=params['ip_height'],
resize_factor=params['resize_factor'])
elif params['model_name'] == 'Net2DFastNoAttn':
model = models.Net2DFastNoAttn(params['num_filters'], num_classes=num_classes,
emb_dim=params['emb_dim'], ip_height=params['ip_height'],
resize_factor=params['resize_factor'])
elif params['model_name'] == 'Net2DFastNoCoordConv':
model = models.Net2DFastNoCoordConv(params['num_filters'], num_classes=num_classes,
emb_dim=params['emb_dim'], ip_height=params['ip_height'],
resize_factor=params['resize_factor'])
else:
print('No valid network specified')
return model
if __name__ == "__main__":
plt.close('all')
params = parameters.get_params(True)
if torch.cuda.is_available():
params['device'] = 'cuda'
else:
params['device'] = 'cpu'
# setup arg parser and populate it with exiting parameters - will not work with lists
parser = argparse.ArgumentParser()
parser.add_argument('data_dir', type=str,
help='Path to root of datasets')
parser.add_argument('ann_dir', type=str,
help='Path to extracted annotations')
parser.add_argument('--train_split', type=str, default='diff', # diff, same
help='Which train split to use')
parser.add_argument('--notes', type=str, default='',
help='Notes to save in text file')
parser.add_argument('--do_not_save_images', action='store_false',
help='Do not save images at the end of training')
parser.add_argument('--standardize_classs_names_ip', type=str,
default='Rhinolophus ferrumequinum;Rhinolophus hipposideros',
help='Will set low and high frequency the same for these classes. Separate names with ";"')
for key, val in params.items():
parser.add_argument('--'+key, type=type(val), default=val)
params = vars(parser.parse_args())
# save notes file
if params['notes'] != '':
tu.write_notes_file(params['experiment'] + 'notes.txt', params['notes'])
# load the training and test meta data - there are different splits defined
train_sets, test_sets = ts.get_train_test_data(params['ann_dir'], params['data_dir'], params['train_split'])
train_sets_no_path, test_sets_no_path = ts.get_train_test_data('', '', params['train_split'])
# keep track of what we have trained on
params['train_sets'] = train_sets_no_path
params['test_sets'] = test_sets_no_path
# load train annotations - merge them all together
print('\nTraining on:')
for tt in train_sets:
print(tt['ann_path'])
classes_to_ignore = params['classes_to_ignore']+params['generic_class']
data_train, params['class_names'], params['class_inv_freq'] = \
tu.load_set_of_anns(train_sets, classes_to_ignore, params['events_of_interest'], params['convert_to_genus'])
params['genus_names'], params['genus_mapping'] = tu.get_genus_mapping(params['class_names'])
params['class_names_short'] = tu.get_short_class_names(params['class_names'])
# standardize the low and high frequency value for specified classes
params['standardize_classs_names'] = params['standardize_classs_names_ip'].split(';')
for cc in params['standardize_classs_names']:
if cc in params['class_names']:
data_train = tu.standardize_low_freq(data_train, cc)
else:
print(cc, 'not found')
# train loader
train_dataset = adl.AudioLoader(data_train, params, is_train=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=params['batch_size'],
shuffle=True, num_workers=params['num_workers'], pin_memory=True)
# test set
print('\nTesting on:')
for tt in test_sets:
print(tt['ann_path'])
data_test, _, _ = tu.load_set_of_anns(test_sets, classes_to_ignore, params['events_of_interest'], params['convert_to_genus'])
data_train = tu.remove_dupes(data_train, data_test)
test_dataset = adl.AudioLoader(data_test, params, is_train=False)
# batch size of 1 because of variable file length
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1,
shuffle=False, num_workers=params['num_workers'], pin_memory=True)
inputs_train = next(iter(train_loader))
# TODO remove params['ip_height'], this is just legacy
params['ip_height'] = int(params['spec_height']*params['resize_factor'])
print('\ntrain batch spec size :', inputs_train['spec'].shape)
print('class target size :', inputs_train['y_2d_classes'].shape)
# select network
model = select_model(params)
model = model.to(params['device'])
optimizer = torch.optim.Adam(model.parameters(), lr=params['lr'])
#optimizer = torch.optim.SGD(model.parameters(), lr=params['lr'], momentum=0.9)
scheduler = CosineAnnealingLR(optimizer, params['num_epochs'] * len(train_loader))
if params['train_loss'] == 'mse':
det_criterion = losses.mse_loss
elif params['train_loss'] == 'focal':
det_criterion = losses.focal_loss
# save parameters to file
with open(params['experiment'] + 'params.json', 'w') as da:
json.dump(params, da, indent=2, sort_keys=True)
# plotting
train_plt_ls = pu.LossPlotter(params['experiment'] + 'train_loss.png', params['num_epochs']+1,
['train_loss'], None, None, ['epoch', 'train_loss'], logy=True)
test_plt_ls = pu.LossPlotter(params['experiment'] + 'test_loss.png', params['num_epochs']+1,
['test_loss'], None, None, ['epoch', 'test_loss'], logy=True)
test_plt = pu.LossPlotter(params['experiment'] + 'test.png', params['num_epochs']+1,
['avg_prec', 'rec_at_x', 'avg_prec_class', 'file_acc', 'top_class'], [0,1], None, ['epoch', ''])
test_plt_class = pu.LossPlotter(params['experiment'] + 'test_avg_prec.png', params['num_epochs']+1,
params['class_names_short'], [0,1], params['class_names_short'], ['epoch', 'avg_prec'])
#
# main train loop
for epoch in range(0, params['num_epochs']+1):
train_loss = train(model, epoch, train_loader, det_criterion, optimizer, scheduler, params)
train_plt_ls.update_and_save(epoch, [train_loss['train_loss']])
if epoch % params['num_eval_epochs'] == 0:
# detection accuracy on test set
test_res, test_loss = test(model, epoch, test_loader, det_criterion, params)
test_plt_ls.update_and_save(epoch, [test_loss['test_loss']])
test_plt.update_and_save(epoch, [test_res['avg_prec'], test_res['rec_at_x'],
test_res['avg_prec_class'], test_res['file_acc'], test_res['top_class']['avg_prec']])
test_plt_class.update_and_save(epoch, [rs['avg_prec'] for rs in test_res['class_pr']])
pu.plot_pr_curve_class(params['experiment'] , 'test_pr', 'test_pr', test_res)
# save trained model
print('saving model to: ' + params['model_file_name'])
op_state = {'epoch': epoch + 1,
'state_dict': model.state_dict(),
#'optimizer' : optimizer.state_dict(),
'params' : params}
torch.save(op_state, params['model_file_name'])
# save an image with associated prediction for each batch in the test set
if not args['do_not_save_images']:
save_images_batch(model, test_loader, params)
|