import os import torch import time import threading import json import gc from flask import Flask, request, jsonify, send_file, Response, stream_with_context from werkzeug.utils import secure_filename from PIL import Image import io import zipfile import uuid import traceback from huggingface_hub import snapshot_download from flask_cors import CORS import numpy as np import trimesh import cv2 import pymeshlab from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline # Force CPU usage os.environ["CUDA_VISIBLE_DEVICES"] = "" # Disable GPU detection torch.set_default_device("cpu") # Set CPU as default device app = Flask(__name__) CORS(app) # Enable CORS for all routes # Configure directories UPLOAD_FOLDER = '/tmp/uploads' RESULTS_FOLDER = '/tmp/results' CACHE_DIR = '/tmp/huggingface' ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'} # Create necessary directories os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(RESULTS_FOLDER, exist_ok=True) os.makedirs(CACHE_DIR, exist_ok=True) # Set Hugging Face cache environment variables os.environ['HF_HOME'] = CACHE_DIR os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers') os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets') app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max # Job tracking dictionary processing_jobs = {} # Global model variables hunyuan_pipeline = None model_loaded = False model_loading = False # Configuration for processing TIMEOUT_SECONDS = 600 # 10 minutes max for Hunyuan3D-2mini on CPU MAX_DIMENSION = 256 # Reduced for CPU memory constraints # TimeoutError for handling timeouts class TimeoutError(Exception): pass # Thread-safe timeout implementation def process_with_timeout(function, args, timeout): result = [None] error = [None] completed = [False] def target(): try: result[0] = function(*args) completed[0] = True except Exception as e: error[0] = e thread = threading.Thread(target=target) thread.daemon = True thread.start() thread.join(timeout) if not completed[0]: if thread.is_alive(): return None, TimeoutError(f"Processing timed out after {timeout} seconds") elif error[0]: return None, error[0] if error[0]: return None, error[0] return result[0], None def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS # Simplified image preprocessing for Hunyuan3D-2mini def preprocess_image(image_path): with Image.open(image_path) as img: img = img.convert("RGB") # Resize to smaller dimensions for CPU if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION: if img.width > img.height: new_width = MAX_DIMENSION new_height = int(img.height * (MAX_DIMENSION / img.width)) else: new_height = MAX_DIMENSION new_width = int(img.width * (MAX_DIMENSION / img.height)) img = img.resize((new_width, new_height), Image.LANCZOS) return img def load_model(): global hunyuan_pipeline, model_loaded, model_loading if model_loaded: return hunyuan_pipeline if model_loading: while model_loading and not model_loaded: time.sleep(0.5) return hunyuan_pipeline try: model_loading = True print("Starting model loading...") model_name = "tencent/Hunyuan3D-2mini" # Download model with retry mechanism max_retries = 3 retry_delay = 5 for attempt in range(max_retries): try: snapshot_download( repo_id=model_name, cache_dir=CACHE_DIR, resume_download=True, ) break except Exception as e: if attempt < max_retries - 1: print(f"Download attempt {attempt+1} failed: {str(e)}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) retry_delay *= 2 else: raise # Load Hunyuan3D-2mini pipeline hunyuan_pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained( model_name, subfolder="hunyuan3d-dit-v2-mini", use_safetensors=True, torch_dtype=torch.float16, cache_dir=CACHE_DIR, device_map="cpu" # Explicitly set to CPU ) model_loaded = True print("Model loaded successfully on CPU") return hunyuan_pipeline except Exception as e: print(f"Error loading model: {str(e)}") print(traceback.format_exc()) raise finally: model_loading = False # Optimize mesh for Unity def optimize_mesh(mesh_path, target_faces=10000): ms = pymeshlab.MeshSet() ms.load_new_mesh(mesh_path) ms.meshing_decimation_quadric_edge_collapse(targetfacenum=target_faces) optimized_path = mesh_path.replace(".glb", "_optimized.glb") ms.save_current_mesh(optimized_path) return optimized_path @app.route('/health', methods=['GET']) def health_check(): return jsonify({ "status": "healthy", "model": "Hunyuan3D-2mini 3D Generator", "device": "cpu" }), 200 @app.route('/progress/', methods=['GET']) def progress(job_id): def generate(): if job_id not in processing_jobs: yield f"data: {json.dumps({'error': 'Job not found'})}\n\n" return job = processing_jobs[job_id] yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n" last_progress = job['progress'] check_count = 0 while job['status'] == 'processing': if job['progress'] != last_progress: yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n" last_progress = job['progress'] time.sleep(0.5) check_count += 1 if check_count > 60: if 'thread_alive' in job and not job['thread_alive'](): job['status'] = 'error' job['error'] = 'Processing thread died unexpectedly' break check_count = 0 if job['status'] == 'completed': yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n" else: yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n" return Response(stream_with_context(generate()), mimetype='text/event-stream') @app.route('/convert', methods=['POST']) def convert_image_to_3d(): if 'image' not in request.files: return jsonify({"error": "No image provided"}), 400 file = request.files['image'] if file.filename == '': return jsonify({"error": "No image selected"}), 400 if not allowed_file(file.filename): return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400 try: output_format = request.form.get('output_format', 'glb').lower() detail_level = request.form.get('detail_level', 'medium').lower() except ValueError: return jsonify({"error": "Invalid parameter values"}), 400 if output_format not in ['glb']: return jsonify({"error": "Only GLB format is supported with Hunyuan3D-2mini"}), 400 job_id = str(uuid.uuid4()) output_dir = os.path.join(RESULTS_FOLDER, job_id) os.makedirs(output_dir, exist_ok=True) filename = secure_filename(file.filename) filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}") file.save(filepath) processing_jobs[job_id] = { 'status': 'processing', 'progress': 0, 'result_url': None, 'preview_url': None, 'error': None, 'output_format': output_format, 'created_at': time.time() } def process_image(): thread = threading.current_thread() processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive() try: processing_jobs[job_id]['progress'] = 5 image = preprocess_image(filepath) processing_jobs[job_id]['progress'] = 10 try: model = load_model() processing_jobs[job_id]['progress'] = 30 except Exception as e: processing_jobs[job_id]['status'] = 'error' processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}" return try: def generate_3d(): # Adjust settings based on detail level steps = {'low': 20, 'medium': 30, 'high': 40} resolution = {'low': 200, 'medium': 256, 'high': 300} mesh = model( image=image, num_inference_steps=steps[detail_level], octree_resolution=resolution[detail_level], num_chunks=10000, generator=torch.manual_seed(12345), output_type="trimesh" )[0] return mesh mesh, error = process_with_timeout(generate_3d, [], TIMEOUT_SECONDS) if error: if isinstance(error, TimeoutError): processing_jobs[job_id]['status'] = 'error' processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds" return else: raise error processing_jobs[job_id]['progress'] = 80 # Export and optimize glb_path = os.path.join(output_dir, "model.glb") mesh.export(glb_path, file_type='glb') # Optimize for Unity optimized_path = optimize_mesh(glb_path) processing_jobs[job_id]['result_url'] = f"/download/{job_id}" processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}" processing_jobs[job_id]['status'] = 'completed' processing_jobs[job_id]['progress'] = 100 print(f"Job {job_id} completed successfully") except Exception as e: error_details = traceback.format_exc() processing_jobs[job_id]['status'] = 'error' processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}" print(f"Error processing job {job_id}: {str(e)}") print(error_details) return if os.path.exists(filepath): os.remove(filepath) gc.collect() except Exception as e: error_details = traceback.format_exc() processing_jobs[job_id]['status'] = 'error' processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}" print(f"Error processing job {job_id}: {str(e)}") print(error_details) if os.path.exists(filepath): os.remove(filepath) processing_thread = threading.Thread(target=process_image) processing_thread.daemon = True processing_thread.start() return jsonify({"job_id": job_id}), 202 @app.route('/download/', methods=['GET']) def download_model(job_id): if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed': return jsonify({"error": "Model not found or processing not complete"}), 404 output_dir = os.path.join(RESULTS_FOLDER, job_id) glb_path = os.path.join(output_dir, "model_optimized.glb") if os.path.exists(glb_path): return send_file(glb_path, as_attachment=True, download_name="model.glb") return jsonify({"error": "File not found"}), 404 @app.route('/preview/', methods=['GET']) def preview_model(job_id): if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed': return jsonify({"error": "Model not found or processing not complete"}), 404 output_dir = os.path.join(RESULTS_FOLDER, job_id) glb_path = os.path.join(output_dir, "model_optimized.glb") if os.path.exists(glb_path): return send_file(glb_path, mimetype='model/gltf-binary') return jsonify({"error": "Model file not found"}), 404 def cleanup_old_jobs(): current_time = time.time() job_ids_to_remove = [] for job_id, job_data in processing_jobs.items(): if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600: job_ids_to_remove.append(job_id) elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800: job_ids_to_remove.append(job_id) for job_id in job_ids_to_remove: output_dir = os.path.join(RESULTS_FOLDER, job_id) try: import shutil if os.path.exists(output_dir): shutil.rmtree(output_dir) except Exception as e: print(f"Error cleaning up job {job_id}: {str(e)}") if job_id in processing_jobs: del processing_jobs[job_id] threading.Timer(300, cleanup_old_jobs).start() @app.route('/model-info/', methods=['GET']) def model_info(job_id): if job_id not in processing_jobs: return jsonify({"error": "Model not found"}), 404 job = processing_jobs[job_id] if job['status'] != 'completed': return jsonify({ "status": job['status'], "progress": job['progress'], "error": job.get('error') }), 200 output_dir = os.path.join(RESULTS_FOLDER, job_id) model_stats = {} glb_path = os.path.join(output_dir, "model_optimized.glb") if os.path.exists(glb_path): model_stats['model_size'] = os.path.getsize(glb_path) return jsonify({ "status": job['status'], "model_format": job['output_format'], "download_url": job['result_url'], "preview_url": job['preview_url'], "model_stats": model_stats, "created_at": job.get('created_at'), "completed_at": job.get('completed_at') }), 200 @app.route('/', methods=['GET']) def index(): return jsonify({ "message": "Image to 3D API (Hunyuan3D-2mini)", "endpoints": [ "/convert", "/progress/", "/download/", "/preview/", "/model-info/" ], "parameters": { "output_format": "glb", "detail_level": "low, medium, or high - controls mesh detail" }, "description": "This API creates full 3D models from 2D images using Hunyuan3D-2mini" }), 200 if __name__ == '__main__': cleanup_old_jobs() port = int(os.environ.get('PORT', 7860)) app.run(host='0.0.0.0', port=port)