Spaces:
Sleeping
Sleeping
Create basic_transformer_block.py
Browse files
tsr/models/transformer/basic_transformer_block.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# --------
|
16 |
+
#
|
17 |
+
# Modified 2024 by the Tripo AI and Stability AI Team.
|
18 |
+
#
|
19 |
+
# Copyright (c) 2024 Tripo AI & Stability AI
|
20 |
+
#
|
21 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
22 |
+
# of this software and associated documentation files (the "Software"), to deal
|
23 |
+
# in the Software without restriction, including without limitation the rights
|
24 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
25 |
+
# copies of the Software, and to permit persons to whom the Software is
|
26 |
+
# furnished to do so, subject to the following conditions:
|
27 |
+
#
|
28 |
+
# The above copyright notice and this permission notice shall be included in all
|
29 |
+
# copies or substantial portions of the Software.
|
30 |
+
#
|
31 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
32 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
33 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
34 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
35 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
36 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
37 |
+
# SOFTWARE.
|
38 |
+
|
39 |
+
from typing import Optional
|
40 |
+
|
41 |
+
import torch
|
42 |
+
import torch.nn.functional as F
|
43 |
+
from torch import nn
|
44 |
+
|
45 |
+
from .attention import Attention
|
46 |
+
|
47 |
+
|
48 |
+
class BasicTransformerBlock(nn.Module):
|
49 |
+
r"""
|
50 |
+
A basic Transformer block.
|
51 |
+
|
52 |
+
Parameters:
|
53 |
+
dim (`int`): The number of channels in the input and output.
|
54 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
55 |
+
attention_head_dim (`int`): The number of channels in each head.
|
56 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
57 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
58 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
59 |
+
attention_bias (:
|
60 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
61 |
+
only_cross_attention (`bool`, *optional*):
|
62 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
63 |
+
double_self_attention (`bool`, *optional*):
|
64 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
65 |
+
upcast_attention (`bool`, *optional*):
|
66 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
67 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
69 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
70 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
71 |
+
final_dropout (`bool` *optional*, defaults to False):
|
72 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
dim: int,
|
78 |
+
num_attention_heads: int,
|
79 |
+
attention_head_dim: int,
|
80 |
+
dropout=0.0,
|
81 |
+
cross_attention_dim: Optional[int] = None,
|
82 |
+
activation_fn: str = "geglu",
|
83 |
+
attention_bias: bool = False,
|
84 |
+
only_cross_attention: bool = False,
|
85 |
+
double_self_attention: bool = False,
|
86 |
+
upcast_attention: bool = False,
|
87 |
+
norm_elementwise_affine: bool = True,
|
88 |
+
norm_type: str = "layer_norm",
|
89 |
+
final_dropout: bool = False,
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
self.only_cross_attention = only_cross_attention
|
93 |
+
|
94 |
+
assert norm_type == "layer_norm"
|
95 |
+
|
96 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
97 |
+
# 1. Self-Attn
|
98 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
99 |
+
self.attn1 = Attention(
|
100 |
+
query_dim=dim,
|
101 |
+
heads=num_attention_heads,
|
102 |
+
dim_head=attention_head_dim,
|
103 |
+
dropout=dropout,
|
104 |
+
bias=attention_bias,
|
105 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
106 |
+
upcast_attention=upcast_attention,
|
107 |
+
)
|
108 |
+
|
109 |
+
# 2. Cross-Attn
|
110 |
+
if cross_attention_dim is not None or double_self_attention:
|
111 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
112 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
113 |
+
# the second cross attention block.
|
114 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
115 |
+
|
116 |
+
self.attn2 = Attention(
|
117 |
+
query_dim=dim,
|
118 |
+
cross_attention_dim=(
|
119 |
+
cross_attention_dim if not double_self_attention else None
|
120 |
+
),
|
121 |
+
heads=num_attention_heads,
|
122 |
+
dim_head=attention_head_dim,
|
123 |
+
dropout=dropout,
|
124 |
+
bias=attention_bias,
|
125 |
+
upcast_attention=upcast_attention,
|
126 |
+
) # is self-attn if encoder_hidden_states is none
|
127 |
+
else:
|
128 |
+
self.norm2 = None
|
129 |
+
self.attn2 = None
|
130 |
+
|
131 |
+
# 3. Feed-forward
|
132 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
133 |
+
self.ff = FeedForward(
|
134 |
+
dim,
|
135 |
+
dropout=dropout,
|
136 |
+
activation_fn=activation_fn,
|
137 |
+
final_dropout=final_dropout,
|
138 |
+
)
|
139 |
+
|
140 |
+
# let chunk size default to None
|
141 |
+
self._chunk_size = None
|
142 |
+
self._chunk_dim = 0
|
143 |
+
|
144 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
145 |
+
# Sets chunk feed-forward
|
146 |
+
self._chunk_size = chunk_size
|
147 |
+
self._chunk_dim = dim
|
148 |
+
|
149 |
+
def forward(
|
150 |
+
self,
|
151 |
+
hidden_states: torch.FloatTensor,
|
152 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
153 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
154 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
155 |
+
) -> torch.FloatTensor:
|
156 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
157 |
+
# 0. Self-Attention
|
158 |
+
norm_hidden_states = self.norm1(hidden_states)
|
159 |
+
|
160 |
+
attn_output = self.attn1(
|
161 |
+
norm_hidden_states,
|
162 |
+
encoder_hidden_states=(
|
163 |
+
encoder_hidden_states if self.only_cross_attention else None
|
164 |
+
),
|
165 |
+
attention_mask=attention_mask,
|
166 |
+
)
|
167 |
+
|
168 |
+
hidden_states = attn_output + hidden_states
|
169 |
+
|
170 |
+
# 3. Cross-Attention
|
171 |
+
if self.attn2 is not None:
|
172 |
+
norm_hidden_states = self.norm2(hidden_states)
|
173 |
+
|
174 |
+
attn_output = self.attn2(
|
175 |
+
norm_hidden_states,
|
176 |
+
encoder_hidden_states=encoder_hidden_states,
|
177 |
+
attention_mask=encoder_attention_mask,
|
178 |
+
)
|
179 |
+
hidden_states = attn_output + hidden_states
|
180 |
+
|
181 |
+
# 4. Feed-forward
|
182 |
+
norm_hidden_states = self.norm3(hidden_states)
|
183 |
+
|
184 |
+
if self._chunk_size is not None:
|
185 |
+
# "feed_forward_chunk_size" can be used to save memory
|
186 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
187 |
+
raise ValueError(
|
188 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
189 |
+
)
|
190 |
+
|
191 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
192 |
+
ff_output = torch.cat(
|
193 |
+
[
|
194 |
+
self.ff(hid_slice)
|
195 |
+
for hid_slice in norm_hidden_states.chunk(
|
196 |
+
num_chunks, dim=self._chunk_dim
|
197 |
+
)
|
198 |
+
],
|
199 |
+
dim=self._chunk_dim,
|
200 |
+
)
|
201 |
+
else:
|
202 |
+
ff_output = self.ff(norm_hidden_states)
|
203 |
+
|
204 |
+
hidden_states = ff_output + hidden_states
|
205 |
+
|
206 |
+
return hidden_states
|
207 |
+
|
208 |
+
|
209 |
+
class FeedForward(nn.Module):
|
210 |
+
r"""
|
211 |
+
A feed-forward layer.
|
212 |
+
|
213 |
+
Parameters:
|
214 |
+
dim (`int`): The number of channels in the input.
|
215 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
216 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
217 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
218 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
219 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
220 |
+
"""
|
221 |
+
|
222 |
+
def __init__(
|
223 |
+
self,
|
224 |
+
dim: int,
|
225 |
+
dim_out: Optional[int] = None,
|
226 |
+
mult: int = 4,
|
227 |
+
dropout: float = 0.0,
|
228 |
+
activation_fn: str = "geglu",
|
229 |
+
final_dropout: bool = False,
|
230 |
+
):
|
231 |
+
super().__init__()
|
232 |
+
inner_dim = int(dim * mult)
|
233 |
+
dim_out = dim_out if dim_out is not None else dim
|
234 |
+
linear_cls = nn.Linear
|
235 |
+
|
236 |
+
if activation_fn == "gelu":
|
237 |
+
act_fn = GELU(dim, inner_dim)
|
238 |
+
if activation_fn == "gelu-approximate":
|
239 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
240 |
+
elif activation_fn == "geglu":
|
241 |
+
act_fn = GEGLU(dim, inner_dim)
|
242 |
+
elif activation_fn == "geglu-approximate":
|
243 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
244 |
+
|
245 |
+
self.net = nn.ModuleList([])
|
246 |
+
# project in
|
247 |
+
self.net.append(act_fn)
|
248 |
+
# project dropout
|
249 |
+
self.net.append(nn.Dropout(dropout))
|
250 |
+
# project out
|
251 |
+
self.net.append(linear_cls(inner_dim, dim_out))
|
252 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
253 |
+
if final_dropout:
|
254 |
+
self.net.append(nn.Dropout(dropout))
|
255 |
+
|
256 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
257 |
+
for module in self.net:
|
258 |
+
hidden_states = module(hidden_states)
|
259 |
+
return hidden_states
|
260 |
+
|
261 |
+
|
262 |
+
class GELU(nn.Module):
|
263 |
+
r"""
|
264 |
+
GELU activation function with tanh approximation support with `approximate="tanh"`.
|
265 |
+
|
266 |
+
Parameters:
|
267 |
+
dim_in (`int`): The number of channels in the input.
|
268 |
+
dim_out (`int`): The number of channels in the output.
|
269 |
+
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
|
270 |
+
"""
|
271 |
+
|
272 |
+
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
|
273 |
+
super().__init__()
|
274 |
+
self.proj = nn.Linear(dim_in, dim_out)
|
275 |
+
self.approximate = approximate
|
276 |
+
|
277 |
+
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
278 |
+
if gate.device.type != "mps":
|
279 |
+
return F.gelu(gate, approximate=self.approximate)
|
280 |
+
# mps: gelu is not implemented for float16
|
281 |
+
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(
|
282 |
+
dtype=gate.dtype
|
283 |
+
)
|
284 |
+
|
285 |
+
def forward(self, hidden_states):
|
286 |
+
hidden_states = self.proj(hidden_states)
|
287 |
+
hidden_states = self.gelu(hidden_states)
|
288 |
+
return hidden_states
|
289 |
+
|
290 |
+
|
291 |
+
class GEGLU(nn.Module):
|
292 |
+
r"""
|
293 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
294 |
+
|
295 |
+
Parameters:
|
296 |
+
dim_in (`int`): The number of channels in the input.
|
297 |
+
dim_out (`int`): The number of channels in the output.
|
298 |
+
"""
|
299 |
+
|
300 |
+
def __init__(self, dim_in: int, dim_out: int):
|
301 |
+
super().__init__()
|
302 |
+
linear_cls = nn.Linear
|
303 |
+
|
304 |
+
self.proj = linear_cls(dim_in, dim_out * 2)
|
305 |
+
|
306 |
+
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
307 |
+
if gate.device.type != "mps":
|
308 |
+
return F.gelu(gate)
|
309 |
+
# mps: gelu is not implemented for float16
|
310 |
+
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
311 |
+
|
312 |
+
def forward(self, hidden_states, scale: float = 1.0):
|
313 |
+
args = ()
|
314 |
+
hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1)
|
315 |
+
return hidden_states * self.gelu(gate)
|
316 |
+
|
317 |
+
|
318 |
+
class ApproximateGELU(nn.Module):
|
319 |
+
r"""
|
320 |
+
The approximate form of Gaussian Error Linear Unit (GELU). For more details, see section 2:
|
321 |
+
https://arxiv.org/abs/1606.08415.
|
322 |
+
|
323 |
+
Parameters:
|
324 |
+
dim_in (`int`): The number of channels in the input.
|
325 |
+
dim_out (`int`): The number of channels in the output.
|
326 |
+
"""
|
327 |
+
|
328 |
+
def __init__(self, dim_in: int, dim_out: int):
|
329 |
+
super().__init__()
|
330 |
+
self.proj = nn.Linear(dim_in, dim_out)
|
331 |
+
|
332 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
333 |
+
x = self.proj(x)
|
334 |
+
return x * torch.sigmoid(1.702 * x)
|