Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import time | |
import threading | |
import json | |
import gc | |
from flask import Flask, request, jsonify, send_file, Response, stream_with_context | |
from werkzeug.utils import secure_filename | |
from PIL import Image | |
import io | |
import zipfile | |
import uuid | |
import traceback | |
from diffusers import ShapEImg2ImgPipeline | |
from diffusers.utils import export_to_obj | |
from huggingface_hub import snapshot_download | |
from flask_cors import CORS | |
import signal | |
import functools | |
app = Flask(__name__) | |
CORS(app) # Enable CORS for all routes | |
# Configure directories | |
UPLOAD_FOLDER = '/tmp/uploads' | |
RESULTS_FOLDER = '/tmp/results' | |
CACHE_DIR = '/tmp/huggingface' | |
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'} | |
# Create necessary directories | |
os.makedirs(UPLOAD_FOLDER, exist_ok=True) | |
os.makedirs(RESULTS_FOLDER, exist_ok=True) | |
os.makedirs(CACHE_DIR, exist_ok=True) | |
# Set Hugging Face cache environment variables | |
os.environ['HF_HOME'] = CACHE_DIR | |
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers') | |
os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets') | |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER | |
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max | |
# Job tracking dictionary | |
processing_jobs = {} | |
# Global model variable | |
pipe = None | |
model_loaded = False | |
model_loading = False | |
# Configuration for processing | |
TIMEOUT_SECONDS = 300 # 5 minutes max for processing | |
MAX_DIMENSION = 512 # Max image dimension to process | |
# Timeout handler for long-running processes | |
class TimeoutError(Exception): | |
pass | |
def timeout_handler(signum, frame): | |
raise TimeoutError("Processing timed out") | |
def with_timeout(timeout): | |
def decorator(func): | |
def wrapper(*args, **kwargs): | |
# Set the timeout handler | |
signal.signal(signal.SIGALRM, timeout_handler) | |
signal.alarm(timeout) | |
try: | |
result = func(*args, **kwargs) | |
finally: | |
# Disable the alarm | |
signal.alarm(0) | |
return result | |
return wrapper | |
return decorator | |
def allowed_file(filename): | |
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS | |
# Function to preprocess image - resize if needed | |
def preprocess_image(image_path): | |
with Image.open(image_path) as img: | |
img = img.convert("RGB") | |
# Resize if the image is too large | |
if img.width > MAX_DIMENSION or img.height > MAX_DIMENSION: | |
# Calculate new dimensions while preserving aspect ratio | |
if img.width > img.height: | |
new_width = MAX_DIMENSION | |
new_height = int(img.height * (MAX_DIMENSION / img.width)) | |
else: | |
new_height = MAX_DIMENSION | |
new_width = int(img.width * (MAX_DIMENSION / img.height)) | |
img = img.resize((new_width, new_height), Image.LANCZOS) | |
# Convert to RGB and return | |
return img | |
def load_model(): | |
global pipe, model_loaded, model_loading | |
if model_loaded: | |
return pipe | |
if model_loading: | |
# Wait for model to load if it's already in progress | |
while model_loading and not model_loaded: | |
time.sleep(0.5) | |
return pipe | |
try: | |
model_loading = True | |
print("Starting model loading...") | |
model_name = "openai/shap-e-img2img" | |
# Download model with retry mechanism | |
max_retries = 3 | |
retry_delay = 5 | |
for attempt in range(max_retries): | |
try: | |
snapshot_download( | |
repo_id=model_name, | |
cache_dir=CACHE_DIR, | |
resume_download=True, | |
) | |
break | |
except Exception as e: | |
if attempt < max_retries - 1: | |
print(f"Download attempt {attempt+1} failed: {str(e)}. Retrying in {retry_delay} seconds...") | |
time.sleep(retry_delay) | |
retry_delay *= 2 | |
else: | |
raise | |
# Initialize pipeline with lower precision to save memory | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if device == "cuda" else torch.float32 | |
pipe = ShapEImg2ImgPipeline.from_pretrained( | |
model_name, | |
torch_dtype=dtype, | |
cache_dir=CACHE_DIR, | |
) | |
pipe = pipe.to(device) | |
# Optimize for inference | |
if device == "cuda": | |
pipe.enable_model_cpu_offload() | |
model_loaded = True | |
print(f"Model loaded successfully on {device}") | |
return pipe | |
except Exception as e: | |
print(f"Error loading model: {str(e)}") | |
print(traceback.format_exc()) | |
raise | |
finally: | |
model_loading = False | |
def health_check(): | |
return jsonify({ | |
"status": "healthy", | |
"model": "Shap-E Image to 3D", | |
"device": "cuda" if torch.cuda.is_available() else "cpu" | |
}), 200 | |
def progress(job_id): | |
def generate(): | |
if job_id not in processing_jobs: | |
yield f"data: {json.dumps({'error': 'Job not found'})}\n\n" | |
return | |
job = processing_jobs[job_id] | |
# Send initial progress | |
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n" | |
# Wait for job to complete or update | |
last_progress = job['progress'] | |
check_count = 0 | |
while job['status'] == 'processing': | |
if job['progress'] != last_progress: | |
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n" | |
last_progress = job['progress'] | |
time.sleep(0.5) | |
check_count += 1 | |
# If client hasn't received updates for a while, check if job is still running | |
if check_count > 60: # 30 seconds with no updates | |
if 'thread_alive' in job and not job['thread_alive'](): | |
job['status'] = 'error' | |
job['error'] = 'Processing thread died unexpectedly' | |
break | |
check_count = 0 | |
# Send final status | |
if job['status'] == 'completed': | |
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n" | |
else: | |
yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n" | |
return Response(stream_with_context(generate()), mimetype='text/event-stream') | |
def convert_image_to_3d(): | |
# Check if image is in the request | |
if 'image' not in request.files: | |
return jsonify({"error": "No image provided"}), 400 | |
file = request.files['image'] | |
if file.filename == '': | |
return jsonify({"error": "No image selected"}), 400 | |
if not allowed_file(file.filename): | |
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400 | |
# Get optional parameters with defaults | |
try: | |
guidance_scale = float(request.form.get('guidance_scale', 3.0)) | |
num_inference_steps = int(request.form.get('num_inference_steps', 64)) | |
output_format = request.form.get('output_format', 'obj').lower() | |
except ValueError: | |
return jsonify({"error": "Invalid parameter values"}), 400 | |
# Validate parameters | |
if guidance_scale < 1.0 or guidance_scale > 5.0: | |
return jsonify({"error": "Guidance scale must be between 1.0 and 5.0"}), 400 | |
if num_inference_steps < 32 or num_inference_steps > 128: | |
return jsonify({"error": "Number of inference steps must be between 32 and 128"}), 400 | |
# Validate output format | |
if output_format not in ['obj', 'glb']: | |
return jsonify({"error": "Unsupported output format. Use 'obj' or 'glb'"}), 400 | |
# Create a job ID | |
job_id = str(uuid.uuid4()) | |
output_dir = os.path.join(RESULTS_FOLDER, job_id) | |
os.makedirs(output_dir, exist_ok=True) | |
# Save the uploaded file | |
filename = secure_filename(file.filename) | |
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}") | |
file.save(filepath) | |
# Initialize job tracking | |
processing_jobs[job_id] = { | |
'status': 'processing', | |
'progress': 0, | |
'result_url': None, | |
'preview_url': None, | |
'error': None, | |
'output_format': output_format, | |
'created_at': time.time() | |
} | |
# Process function with timeout | |
def process_with_timeout(image, steps, scale, format): | |
# Load model | |
pipe = load_model() | |
processing_jobs[job_id]['progress'] = 30 | |
# Generate 3D model | |
return pipe( | |
image, | |
guidance_scale=scale, | |
num_inference_steps=steps, | |
output_type="mesh", | |
).images | |
# Start processing in a separate thread | |
def process_image(): | |
thread = threading.current_thread() | |
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive() | |
try: | |
# Preprocess image (resize if needed) | |
processing_jobs[job_id]['progress'] = 5 | |
image = preprocess_image(filepath) | |
processing_jobs[job_id]['progress'] = 10 | |
# Process image with timeout | |
try: | |
images = process_with_timeout(image, num_inference_steps, guidance_scale, output_format) | |
processing_jobs[job_id]['progress'] = 80 | |
except TimeoutError: | |
processing_jobs[job_id]['status'] = 'error' | |
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds" | |
return | |
# Export based on requested format | |
if output_format == 'obj': | |
obj_path = os.path.join(output_dir, "model.obj") | |
export_to_obj(images[0], obj_path) | |
# Create a zip file with OBJ and MTL | |
zip_path = os.path.join(output_dir, "model.zip") | |
with zipfile.ZipFile(zip_path, 'w') as zipf: | |
zipf.write(obj_path, arcname="model.obj") | |
mtl_path = os.path.join(output_dir, "model.mtl") | |
if os.path.exists(mtl_path): | |
zipf.write(mtl_path, arcname="model.mtl") | |
processing_jobs[job_id]['result_url'] = f"/download/{job_id}" | |
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}" | |
elif output_format == 'glb': | |
from trimesh import Trimesh | |
mesh = images[0] | |
vertices = mesh.verts | |
faces = mesh.faces | |
# Create a trimesh object | |
trimesh_obj = Trimesh(vertices=vertices, faces=faces) | |
# Export as GLB | |
glb_path = os.path.join(output_dir, "model.glb") | |
trimesh_obj.export(glb_path) | |
processing_jobs[job_id]['result_url'] = f"/download/{job_id}" | |
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}" | |
# Update job status | |
processing_jobs[job_id]['status'] = 'completed' | |
processing_jobs[job_id]['progress'] = 100 | |
# Clean up temporary file | |
if os.path.exists(filepath): | |
os.remove(filepath) | |
# Force garbage collection to free memory | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
except Exception as e: | |
# Handle errors | |
error_details = traceback.format_exc() | |
processing_jobs[job_id]['status'] = 'error' | |
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}" | |
print(f"Error processing job {job_id}: {str(e)}") | |
print(error_details) | |
# Clean up on error | |
if os.path.exists(filepath): | |
os.remove(filepath) | |
# Start processing thread | |
processing_thread = threading.Thread(target=process_image) | |
processing_thread.daemon = True | |
processing_thread.start() | |
# Return job ID immediately | |
return jsonify({"job_id": job_id}), 202 # 202 Accepted | |
def download_model(job_id): | |
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed': | |
return jsonify({"error": "Model not found or processing not complete"}), 404 | |
# Get the output directory for this job | |
output_dir = os.path.join(RESULTS_FOLDER, job_id) | |
# Determine file format from the job data | |
output_format = processing_jobs[job_id].get('output_format', 'obj') | |
if output_format == 'obj': | |
zip_path = os.path.join(output_dir, "model.zip") | |
if os.path.exists(zip_path): | |
return send_file(zip_path, as_attachment=True, download_name="model.zip") | |
else: # glb | |
glb_path = os.path.join(output_dir, "model.glb") | |
if os.path.exists(glb_path): | |
return send_file(glb_path, as_attachment=True, download_name="model.glb") | |
return jsonify({"error": "File not found"}), 404 | |
def preview_model(job_id): | |
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed': | |
return jsonify({"error": "Model not found or processing not complete"}), 404 | |
# Get the output directory for this job | |
output_dir = os.path.join(RESULTS_FOLDER, job_id) | |
output_format = processing_jobs[job_id].get('output_format', 'obj') | |
if output_format == 'obj': | |
obj_path = os.path.join(output_dir, "model.obj") | |
if os.path.exists(obj_path): | |
return send_file(obj_path, mimetype='model/obj') | |
else: # glb | |
glb_path = os.path.join(output_dir, "model.glb") | |
if os.path.exists(glb_path): | |
return send_file(glb_path, mimetype='model/gltf-binary') | |
return jsonify({"error": "Model file not found"}), 404 | |
# Cleanup old jobs periodically | |
def cleanup_old_jobs(): | |
current_time = time.time() | |
job_ids_to_remove = [] | |
for job_id, job_data in processing_jobs.items(): | |
# Remove completed jobs after 1 hour | |
if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600: | |
job_ids_to_remove.append(job_id) | |
# Remove error jobs after 30 minutes | |
elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800: | |
job_ids_to_remove.append(job_id) | |
# Remove the jobs | |
for job_id in job_ids_to_remove: | |
output_dir = os.path.join(RESULTS_FOLDER, job_id) | |
try: | |
import shutil | |
if os.path.exists(output_dir): | |
shutil.rmtree(output_dir) | |
except Exception as e: | |
print(f"Error cleaning up job {job_id}: {str(e)}") | |
# Remove from tracking dictionary | |
if job_id in processing_jobs: | |
del processing_jobs[job_id] | |
# Schedule the next cleanup | |
threading.Timer(300, cleanup_old_jobs).start() # Run every 5 minutes | |
def index(): | |
return jsonify({ | |
"message": "Image to 3D API is running", | |
"endpoints": ["/convert", "/progress/<job_id>", "/download/<job_id>", "/preview/<job_id>"] | |
}), 200 | |
if __name__ == '__main__': | |
# Start the cleanup thread | |
cleanup_old_jobs() | |
# Use port 7860 which is standard for Hugging Face Spaces | |
port = int(os.environ.get('PORT', 7860)) | |
app.run(host='0.0.0.0', port=port) |