Spaces:
Sleeping
Sleeping
File size: 15,105 Bytes
d6e1b09 c105678 3a58e1b cd1cc5d 3a58e1b c105678 e5edf92 8dac441 cd1cc5d bf928c6 4954710 c105678 842d6d9 6dbef31 18afcf1 c105678 842d6d9 c105678 e5edf92 c105678 e5edf92 fa62b8d c105678 842d6d9 c105678 fa62b8d 4954710 cd1cc5d e5edf92 dffcbc8 4954710 cd1cc5d fa62b8d c105678 fa62b8d de67259 ffe4279 64188d6 d6e1b09 4954710 de67259 cd1cc5d fa62b8d 4954710 fa62b8d 8dac441 4954710 fa62b8d 4954710 fa62b8d cd1cc5d fa62b8d 4954710 fa62b8d 4954710 13afc6c fa62b8d 64188d6 fa62b8d 4954710 64188d6 e1232bb 4954710 138cb5e fa62b8d 8dac441 4954710 fa62b8d f515ccd fa62b8d 8dac441 fa62b8d 64188d6 4954710 64188d6 4954710 64188d6 4954710 dffcbc8 4954710 64188d6 6a5c502 fa62b8d cfa68ff 4954710 cfa68ff fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d 13afc6c cfa68ff fa62b8d afec0dd c105678 fa62b8d c105678 13afc6c fa62b8d cfa68ff fa62b8d b89c7e7 fa62b8d 3a58e1b fa62b8d 3a58e1b cd1cc5d 3a58e1b fa62b8d b89c7e7 3a58e1b fa62b8d 3a58e1b fa62b8d 3a58e1b fa62b8d 3a58e1b fa62b8d 4954710 13afc6c fa62b8d cfa68ff 64188d6 8dac441 cfa68ff fa62b8d 13afc6c fa62b8d b89c7e7 13afc6c 4954710 13afc6c fa62b8d 64188d6 cfa68ff fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d 13afc6c fa62b8d cfa68ff 1c91a49 fa62b8d b89c7e7 fa62b8d b89c7e7 fa62b8d c105678 fa62b8d b89c7e7 13afc6c b89c7e7 dffcbc8 b89c7e7 fa62b8d 4954710 fa62b8d 13afc6c fa62b8d cfa68ff fa62b8d b89c7e7 fa62b8d b89c7e7 fa62b8d b89c7e7 fa62b8d 4954710 fa62b8d cfa68ff fa62b8d b89c7e7 dffcbc8 fa62b8d 4954710 fa62b8d 8dac441 fa62b8d d6e1b09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
import os
import torch
import time
import threading
import json
import gc
from flask import Flask, request, jsonify, send_file, Response, stream_with_context
from werkzeug.utils import secure_filename
from PIL import Image
import io
import uuid
import traceback
from huggingface_hub import snapshot_download
from flask_cors import CORS
import numpy as np
import trimesh
from tsr.system import TripoSR
from tsr.utils import remove_background, resize_foreground
os.environ["CUDA_VISIBLE_DEVICES"] = ""
torch.set_default_device("cpu")
torch.cuda.is_available = lambda: False
torch.cuda.device_count = lambda: 0
app = Flask(__name__)
CORS(app)
UPLOAD_FOLDER = '/tmp/uploads'
RESULTS_FOLDER = '/tmp/results'
CACHE_DIR = '/tmp/huggingface'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULTS_FOLDER, exist_ok=True)
os.makedirs(CACHE_DIR, exist_ok=True)
os.environ['HF_HOME'] = CACHE_DIR
os.environ['TRANSFORMERS_CACHE'] = os.path.join(CACHE_DIR, 'transformers')
os.environ['HF_DATASETS_CACHE'] = os.path.join(CACHE_DIR, 'datasets')
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
processing_jobs = {}
triposr_model = None
model_loaded = False
model_loading = False
TIMEOUT_SECONDS = 300
MAX_DIMENSION = 512 # TripoSR uses 512x512 inputs
class TimeoutError(Exception):
pass
def process_with_timeout(function, args, timeout):
result = [None]
error = [None]
completed = [False]
def target():
try:
result[0] = function(*args)
completed[0] = True
except Exception as e:
error[0] = e
thread = threading.Thread(target=target)
thread.daemon = True
thread.start()
thread.join(timeout)
if not completed[0]:
if thread.is_alive():
return None, TimeoutError(f"Processing timed out after {timeout} seconds")
elif error[0]:
return None, error[0]
if error[0]:
return None, error[0]
return result[0], None
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def preprocess_image(image_path):
try:
with Image.open(image_path) as img:
if img.mode == 'RGBA':
img = img.convert('RGB')
img = img.resize((512, 512), Image.LANCZOS)
img_array = np.array(img) / 255.0
img_array = remove_background(img_array)
img_array = resize_foreground(img_array, 0.85)
img_array = np.clip(img_array, 0, 1) * 255
return Image.fromarray(img_array.astype(np.uint8))
except Exception as e:
raise Exception(f"Error preprocessing image: {str(e)}")
def load_model():
global triposr_model, model_loaded, model_loading
if model_loaded:
return triposr_model
if model_loading:
while model_loading and not model_loaded:
time.sleep(0.5)
return triposr_model
try:
model_loading = True
print("Loading TripoSR...")
model_name = "tripo3d/triposr"
max_retries = 3
retry_delay = 5
for attempt in range(max_retries):
try:
snapshot_download(
repo_id=model_name,
cache_dir=CACHE_DIR,
resume_download=True,
)
break
except Exception as e:
if attempt < max_retries - 1:
print(f"Download attempt {attempt+1} failed: {str(e)}. Retrying...")
time.sleep(retry_delay)
retry_delay *= 2
else:
raise
triposr_model = TripoSR.from_pretrained(
model_name,
cache_dir=CACHE_DIR,
device="cpu",
)
model_loaded = True
print("TripoSR loaded successfully on CPU")
return triposr_model
except Exception as e:
print(f"Error loading model: {str(e)}")
print(traceback.format_exc())
raise
finally:
model_loading = False
def generate_3d_model(image, detail_level):
try:
chunk_size = {'low': 4096, 'medium': 8192, 'high': 16384}
chunk = chunk_size[detail_level]
with torch.no_grad():
scene_codes = triposr_model(image, device="cpu")
meshes = triposr_model.mesher(scene_codes, chunk_size=chunk)
mesh = meshes[0]
vertices = np.array(mesh.vertices)
faces = np.array(mesh.faces)
vertex_colors = np.array(mesh.vertex_colors) if hasattr(mesh, 'vertex_colors') and mesh.vertex_colors is not None else None
trimesh_mesh = trimesh.Trimesh(
vertices=vertices,
faces=faces,
vertex_colors=vertex_colors
)
trimesh_mesh.apply_transform(trimesh.transformations.rotation_matrix(np.pi, [1, 0, 0]))
return trimesh_mesh
except Exception as e:
raise Exception(f"Error generating 3D model: {str(e)}")
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({
"status": "healthy",
"model": "TripoSR",
"device": "cpu"
}), 200
@app.route('/progress/<job_id>', methods=['GET'])
def progress(job_id):
def generate():
if job_id not in processing_jobs:
yield f"data: {json.dumps({'error': 'Job not found'})}\n\n"
return
job = processing_jobs[job_id]
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
last_progress = job['progress']
check_count = 0
while job['status'] == 'processing':
if job['progress'] != last_progress:
yield f"data: {json.dumps({'status': 'processing', 'progress': job['progress']})}\n\n"
last_progress = job['progress']
time.sleep(0.5)
check_count += 1
if check_count > 60:
if 'thread_alive' in job and not job['thread_alive']():
job['status'] = 'error'
job['error'] = 'Processing thread died unexpectedly'
break
check_count = 0
if job['status'] == 'completed':
yield f"data: {json.dumps({'status': 'completed', 'progress': 100, 'result_url': job['result_url'], 'preview_url': job['preview_url']})}\n\n"
else:
yield f"data: {json.dumps({'status': 'error', 'error': job['error']})}\n\n"
return Response(stream_with_context(generate()), mimetype='text/event-stream')
@app.route('/convert', methods=['POST'])
def convert_image_to_3d():
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
file = request.files['image']
if file.filename == '':
return jsonify({"error": "No image selected"}), 400
if not allowed_file(file.filename):
return jsonify({"error": f"File type not allowed. Supported types: {', '.join(ALLOWED_EXTENSIONS)}"}), 400
try:
output_format = request.form.get('output_format', 'glb').lower()
detail_level = request.form.get('detail_level', 'medium').lower()
except ValueError:
return jsonify({"error": "Invalid parameter values"}), 400
if output_format not in ['glb', 'obj']:
return jsonify({"error": "Supported formats: glb, obj"}), 400
job_id = str(uuid.uuid4())
output_dir = os.path.join(RESULTS_FOLDER, job_id)
os.makedirs(output_dir, exist_ok=True)
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], f"{job_id}_{filename}")
file.save(filepath)
processing_jobs[job_id] = {
'status': 'processing',
'progress': 0,
'result_url': None,
'preview_url': None,
'error': None,
'output_format': output_format,
'created_at': time.time()
}
def process_image():
thread = threading.current_thread()
processing_jobs[job_id]['thread_alive'] = lambda: thread.is_alive()
try:
processing_jobs[job_id]['progress'] = 5
image = preprocess_image(filepath)
processing_jobs[job_id]['progress'] = 10
try:
model = load_model()
processing_jobs[job_id]['progress'] = 30
except Exception as e:
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error loading model: {str(e)}"
return
try:
def generate_3d():
return generate_3d_model(image, detail_level)
mesh, error = process_with_timeout(generate_3d, [], TIMEOUT_SECONDS)
if error:
if isinstance(error, TimeoutError):
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Processing timed out after {TIMEOUT_SECONDS} seconds"
return
else:
raise error
processing_jobs[job_id]['progress'] = 80
file_path = os.path.join(output_dir, f"model.{output_format}")
mesh.export(file_path, file_type=output_format)
processing_jobs[job_id]['result_url'] = f"/download/{job_id.ConcurrentHashMap}"
processing_jobs[job_id]['preview_url'] = f"/preview/{job_id}"
processing_jobs[job_id]['status'] = 'completed'
processing_jobs[job_id]['progress'] = 100
print(f"Job {job_id} completed")
except Exception as e:
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"Error during processing: {str(e)}"
print(f"Error processing job {job_id}: {str(e)}")
print(error_details)
return
if os.path.exists(filepath):
os.remove(filepath)
gc.collect()
except Exception as e:
error_details = traceback.format_exc()
processing_jobs[job_id]['status'] = 'error'
processing_jobs[job_id]['error'] = f"{str(e)}\n{error_details}"
print(f"Error processing job {job_id}: {str(e)}")
print(error_details)
if os.path.exists(filepath):
os.remove(filepath)
processing_thread = threading.Thread(target=process_image)
processing_thread.daemon = True
processing_thread.start()
return jsonify({"job_id": job_id}), 202
@app.route('/download/<job_id>', methods=['GET'])
def download_model(job_id):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
output_dir = os.path.join(RESULTS_FOLDER, job_id)
output_format = processing_jobs[job_id]['output_format']
file_path = os.path.join(output_dir, f"model.{output_format}")
if os.path.exists(file_path):
return send_file(file_path, as_attachment=True, download_name=f"model.{output_format}")
return jsonify({"error": "File not found"}), 404
@app.route('/preview/<job_id>', methods=['GET'])
def preview_model(job_id):
if job_id not in processing_jobs or processing_jobs[job_id]['status'] != 'completed':
return jsonify({"error": "Model not found or processing not complete"}), 404
output_dir = os.path.join(RESULTS_FOLDER, job_id)
output_format = processing_jobs[job_id]['output_format']
file_path = os.path.join(output_dir, f"model.{output_format}")
if os.path.exists(file_path):
if output_format == 'glb':
return send_file(file_path, mimetype='model/gltf-binary')
else:
return send_file(file_path, mimetype='text/plain')
return jsonify({"error": "File not found"}), 404
def cleanup_old_jobs():
current_time = time.time()
job_ids_to_remove = []
for job_id, job_data in processing_jobs.items():
if job_data['status'] == 'completed' and (current_time - job_data.get('created_at', 0)) > 3600:
job_ids_to_remove.append(job_id)
elif job_data['status'] == 'error' and (current_time - job_data.get('created_at', 0)) > 1800:
job_ids_to_remove.append(job_id)
for job_id in job_ids_to_remove:
output_dir = os.path.join(RESULTS_FOLDER, job_id)
try:
import shutil
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
except Exception as e:
print(f"Error cleaning up job {job_id}: {str(e)}")
if job_id in processing_jobs:
del processing_jobs[job_id]
threading.Timer(300, cleanup_old_jobs).start()
@app.route('/model-info/<job_id>', methods=['GET'])
def model_info(job_id):
if job_id not in processing_jobs:
return jsonify({"error": "Model not found"}), 404
job = processing_jobs[job_id]
if job['status'] != 'completed':
return jsonify({
"status": job['status'],
"progress": job['progress'],
"error": job.get('error')
}), 200
output_dir = os.path.join(RESULTS_FOLDER, job_id)
output_format = job['output_format']
model_stats = {}
file_path = os.path.join(output_dir, f"model.{output_format}")
if os.path.exists(file_path):
model_stats['model_size'] = os.path.getsize(file_path)
return jsonify({
"status": job['status'],
"model_format": output_format,
"download_url": job['result_url'],
"preview_url": job['preview_url'],
"model_stats": model_stats,
"created_at": job.get('created_at'),
"completed_at": job.get('completed_at')
}), 200
@app.route('/', methods=['GET'])
def index():
return jsonify({
"message": "Image to 3D API (TripoSR)",
"endpoints": [
"/convert",
"/progress/<job_id>",
"/download/<job_id>",
"/preview/<job_id>",
"/model-info/<job_id>"
],
"parameters": {
"output_format": "glb or obj",
"detail_level": "low, medium, or high"
},
"description": "Creates 3D models from 2D images using TripoSR."
}), 200
if __name__ == '__main__':
cleanup_old_jobs()
port = int(os.environ.get('PORT', 7860))
app.run(host='0.0.0.0', port=port)
|