File size: 18,689 Bytes
a8d28cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1a141
 
 
a8d28cf
 
 
 
 
 
4a1a141
a8d28cf
 
4a1a141
 
a8d28cf
 
 
 
 
 
 
4a1a141
a8d28cf
 
bf65784
a8d28cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1a141
a8d28cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1a141
a8d28cf
 
 
 
4a1a141
 
a8d28cf
 
 
4a1a141
a8d28cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1a141
 
 
 
 
 
 
 
a8d28cf
 
 
 
 
 
4a1a141
bf65784
a8d28cf
 
 
 
 
 
 
4a1a141
 
a8d28cf
 
4a1a141
a8d28cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1a141
 
a8d28cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# from flask import Flask, request, jsonify
# import os
# import pdfplumber
# import pytesseract
# from PIL import Image
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# import torch
# import logging

# app = Flask(__name__)

# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)

# # Load Pegasus Model (load once globally)
# logger.info("Loading Pegasus model and tokenizer...")
# tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
# model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum").to("cpu")  # Force CPU to manage memory
# logger.info("Model loaded successfully.")

# # Extract text from PDF with page limit
# def extract_text_from_pdf(file_path, max_pages=5):
#     text = ""
#     try:
#         with pdfplumber.open(file_path) as pdf:
#             total_pages = len(pdf.pages)
#             pages_to_process = min(total_pages, max_pages)
#             logger.info(f"Extracting text from {pages_to_process} of {total_pages} pages in {file_path}")
#             for i, page in enumerate(pdf.pages[:pages_to_process]):
#                 try:
#                     extracted = page.extract_text()
#                     if extracted:
#                         text += extracted + "\n"
#                     else:
#                         logger.info(f"No text on page {i+1}, attempting OCR...")
#                         image = page.to_image().original
#                         text += pytesseract.image_to_string(image) + "\n"
#                 except Exception as e:
#                     logger.warning(f"Error processing page {i+1}: {e}")
#                     continue
#     except Exception as e:
#         logger.error(f"Failed to process PDF {file_path}: {e}")
#         return ""
#     return text.strip()

# # Extract text from image (OCR)
# def extract_text_from_image(file_path):
#     try:
#         logger.info(f"Extracting text from image {file_path} using OCR...")
#         image = Image.open(file_path)
#         text = pytesseract.image_to_string(image)
#         return text.strip()
#     except Exception as e:
#         logger.error(f"Failed to process image {file_path}: {e}")
#         return ""

# # Summarize text with chunking for large inputs
# def summarize_text(text, max_input_length=512, max_output_length=150):
#     try:
#         logger.info("Summarizing text...")
#         # Tokenize and truncate to max_input_length
#         inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_input_length, padding=True)
#         input_length = inputs["input_ids"].shape[1]
#         logger.info(f"Input length: {input_length} tokens")
        
#         # Adjust generation params for efficiency
#         summary_ids = model.generate(
#             inputs["input_ids"],
#             max_length=max_output_length,
#             min_length=30,
#             num_beams=2,  # Reduce beams for speedup
#             early_stopping=True,
#             length_penalty=1.0,  # Encourage shorter outputs
#         )
#         summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
#         logger.info("Summarization completed.")
#         return summary
#     except Exception as e:
#         logger.error(f"Error during summarization: {e}")
#         return ""

# @app.route('/summarize', methods=['POST'])
# def summarize_document():
#     if 'file' not in request.files:
#         logger.error("No file uploaded in request.")
#         return jsonify({"error": "No file uploaded"}), 400
    
#     file = request.files['file']
#     filename = file.filename
#     if not filename:
#         logger.error("Empty filename in request.")
#         return jsonify({"error": "No file uploaded"}), 400
    
#     file_path = os.path.join("/tmp", filename)
#     try:
#         file.save(file_path)
#         logger.info(f"File saved to {file_path}")
        
#         if filename.lower().endswith('.pdf'):
#             text = extract_text_from_pdf(file_path, max_pages=2)  # Reduce to 2 pages
#         elif filename.lower().endswith(('.png', '.jpeg', '.jpg')):
#             text = extract_text_from_image(file_path)
#         else:
#             logger.error(f"Unsupported file format: {filename}")
#             return jsonify({"error": "Unsupported file format. Use PDF, PNG, JPEG, or JPG"}), 400
        
#         if not text:
#             logger.warning(f"No text extracted from {filename}")
#             return jsonify({"error": "No text extracted from the file"}), 400
        
#         summary = summarize_text(text)
#         if not summary:
#             logger.warning("Summarization failed to produce output.")
#             return jsonify({"error": "Failed to generate summary"}), 500
        
#         logger.info(f"Summary generated for {filename}")
#         return jsonify({"summary": summary})
    
#     except Exception as e:
#         logger.error(f"Unexpected error processing {filename}: {e}")
#         return jsonify({"error": str(e)}), 500
    
#     finally:
#         if os.path.exists(file_path):
#             try:
#                 os.remove(file_path)
#                 logger.info(f"Cleaned up file: {file_path}")
#             except Exception as e:
#                 logger.warning(f"Failed to delete {file_path}: {e}")

# if __name__ == '__main__':
#     logger.info("Starting Flask app...")
#     app.run(host='0.0.0.0', port=7860)


import os
import pdfplumber
from PIL import Image
import pytesseract
import numpy as np
from flask import Flask, request, jsonify
from flask_cors import CORS
from transformers import PegasusForConditionalGeneration, PegasusTokenizer, BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset, concatenate_datasets
import torch
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

app = Flask(__name__)
CORS(app)
UPLOAD_FOLDER = 'uploads'
PEGASUS_MODEL_DIR = 'fine_tuned_pegasus'
BERT_MODEL_DIR = 'fine_tuned_bert'
LEGALBERT_MODEL_DIR = 'fine_tuned_legalbert'
MAX_FILE_SIZE = 100 * 1024 * 1024
os.makedirs(UPLOAD_FOLDER, exist_ok=True)

transformers.logging.set_verbosity_error()
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"

# Pegasus Fine-Tuning
def load_or_finetune_pegasus():
    if os.path.exists(PEGASUS_MODEL_DIR):
        print("Loading fine-tuned Pegasus model...")
        tokenizer = PegasusTokenizer.from_pretrained(PEGASUS_MODEL_DIR)
        model = PegasusForConditionalGeneration.from_pretrained(PEGASUS_MODEL_DIR)
    else:
        print("Fine-tuning Pegasus on CNN/Daily Mail and XSUM...")
        tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
        model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
        
        # Load and combine datasets
        cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]")  # 5K samples
        xsum = load_dataset("xsum", split="train[:5000]")  # 5K samples
        combined_dataset = concatenate_datasets([cnn_dm, xsum])
        
        def preprocess_function(examples):
            inputs = tokenizer(examples["article"] if "article" in examples else examples["document"], 
                              max_length=512, truncation=True, padding="max_length")
            targets = tokenizer(examples["highlights"] if "highlights" in examples else examples["summary"], 
                               max_length=400, truncation=True, padding="max_length")
            inputs["labels"] = targets["input_ids"]
            return inputs
        
        tokenized_dataset = combined_dataset.map(preprocess_function, batched=True)
        train_dataset = tokenized_dataset.select(range(8000))  # 80%
        eval_dataset = tokenized_dataset.select(range(8000, 10000))  # 20%
        
        training_args = TrainingArguments(
            output_dir="./pegasus_finetune",
            num_train_epochs=3,  # Increased for better fine-tuning
            per_device_train_batch_size=1,
            per_device_eval_batch_size=1,
            warmup_steps=500,
            weight_decay=0.01,
            logging_dir="./logs",
            logging_steps=10,
            eval_strategy="epoch",
            save_strategy="epoch",
            load_best_model_at_end=True,
        )
        
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
        )
        
        trainer.train()
        trainer.save_model(PEGASUS_MODEL_DIR)
        tokenizer.save_pretrained(PEGASUS_MODEL_DIR)
        print(f"Fine-tuned Pegasus saved to {PEGASUS_MODEL_DIR}")
    
    return tokenizer, model

# BERT Fine-Tuning
def load_or_finetune_bert():
    if os.path.exists(BERT_MODEL_DIR):
        print("Loading fine-tuned BERT model...")
        tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_DIR)
        model = BertForSequenceClassification.from_pretrained(BERT_MODEL_DIR, num_labels=2)
    else:
        print("Fine-tuning BERT on CNN/Daily Mail for extractive summarization...")
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
        model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
        
        # Load dataset and preprocess for sentence classification
        cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]")
        
        def preprocess_for_extractive(examples):
            sentences = []
            labels = []
            for article, highlights in zip(examples["article"], examples["highlights"]):
                article_sents = article.split(". ")
                highlight_sents = highlights.split(". ")
                for sent in article_sents:
                    if sent.strip():
                        # Label as 1 if sentence is similar to any highlight, else 0
                        is_summary = any(sent.strip() in h for h in highlight_sents)
                        sentences.append(sent)
                        labels.append(1 if is_summary else 0)
            return {"sentence": sentences, "label": labels}
        
        dataset = cnn_dm.map(preprocess_for_extractive, batched=True, remove_columns=["article", "highlights", "id"])
        tokenized_dataset = dataset.map(
            lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
            batched=True
        )
        tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
        train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
        eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
        
        training_args = TrainingArguments(
            output_dir="./bert_finetune",
            num_train_epochs=3,
            per_device_train_batch_size=8,
            per_device_eval_batch_size=8,
            warmup_steps=500,
            weight_decay=0.01,
            logging_dir="./logs",
            logging_steps=10,
            eval_strategy="epoch",
            save_strategy="epoch",
            load_best_model_at_end=True,
        )
        
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
        )
        
        trainer.train()
        trainer.save_model(BERT_MODEL_DIR)
        tokenizer.save_pretrained(BERT_MODEL_DIR)
        print(f"Fine-tuned BERT saved to {BERT_MODEL_DIR}")
    
    return tokenizer, model

# LegalBERT Fine-Tuning
def load_or_finetune_legalbert():
    if os.path.exists(LEGALBERT_MODEL_DIR):
        print("Loading fine-tuned LegalBERT model...")
        tokenizer = BertTokenizer.from_pretrained(LEGALBERT_MODEL_DIR)
        model = BertForSequenceClassification.from_pretrained(LEGALBERT_MODEL_DIR, num_labels=2)
    else:
        print("Fine-tuning LegalBERT on Billsum for extractive summarization...")
        tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
        model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased", num_labels=2)
        
        # Load dataset
        billsum = load_dataset("billsum", split="train[:5000]")
        
        def preprocess_for_extractive(examples):
            sentences = []
            labels = []
            for text, summary in zip(examples["text"], examples["summary"]):
                text_sents = text.split(". ")
                summary_sents = summary.split(". ")
                for sent in text_sents:
                    if sent.strip():
                        is_summary = any(sent.strip() in s for s in summary_sents)
                        sentences.append(sent)
                        labels.append(1 if is_summary else 0)
            return {"sentence": sentences, "label": labels}
        
        dataset = billsum.map(preprocess_for_extractive, batched=True, remove_columns=["text", "summary", "title"])
        tokenized_dataset = dataset.map(
            lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
            batched=True
        )
        tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
        train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
        eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
        
        training_args = TrainingArguments(
            output_dir="./legalbert_finetune",
            num_train_epochs=3,
            per_device_train_batch_size=8,
            per_device_eval_batch_size=8,
            warmup_steps=500,
            weight_decay=0.01,
            logging_dir="./logs",
            logging_steps=10,
            eval_strategy="epoch",
            save_strategy="epoch",
            load_best_model_at_end=True,
        )
        
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
        )
        
        trainer.train()
        trainer.save_model(LEGALBERT_MODEL_DIR)
        tokenizer.save_pretrained(LEGALBERT_MODEL_DIR)
        print(f"Fine-tuned LegalBERT saved to {LEGALBERT_MODEL_DIR}")
    
    return tokenizer, model

# Load models
pegasus_tokenizer, pegasus_model = load_or_finetune_pegasus()
bert_tokenizer, bert_model = load_or_finetune_bert()
legalbert_tokenizer, legalbert_model = load_or_finetune_legalbert()

def extract_text_from_pdf(file_path):
    text = ""
    with pdfplumber.open(file_path) as pdf:
        for page in pdf.pages:
            text += page.extract_text() or ""
    return text

def extract_text_from_image(file_path):
    image = Image.open(file_path)
    text = pytesseract.image_to_string(image)
    return text

def choose_model(text):
    legal_keywords = ["court", "legal", "law", "judgment", "contract", "statute", "case"]
    tfidf = TfidfVectorizer(vocabulary=legal_keywords)
    tfidf_matrix = tfidf.fit_transform([text.lower()])
    score = np.sum(tfidf_matrix.toarray())
    if score > 0.1:
        return "legalbert"
    elif len(text.split()) > 50:
        return "pegasus"
    else:
        return "bert"

def summarize_with_pegasus(text):
    inputs = pegasus_tokenizer(text, truncation=True, padding="longest", return_tensors="pt", max_length=512)
    summary_ids = pegasus_model.generate(
        inputs["input_ids"], 
        max_length=400, min_length=80, length_penalty=1.5, num_beams=4
    )
    return pegasus_tokenizer.decode(summary_ids[0], skip_special_tokens=True)

def summarize_with_bert(text):
    sentences = text.split(". ")
    if len(sentences) < 6:  # Ensure enough for 5 sentences
        return text
    inputs = bert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
    with torch.no_grad():
        outputs = bert_model(**inputs)
    logits = outputs.logits
    probs = torch.softmax(logits, dim=1)[:, 1]  # Probability of being a summary sentence
    key_sentence_idx = probs.argsort(descending=True)[:5]  # Top 5 sentences
    return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])

def summarize_with_legalbert(text):
    sentences = text.split(". ")
    if len(sentences) < 6:
        return text
    inputs = legalbert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
    with torch.no_grad():
        outputs = legalbert_model(**inputs)
    logits = outputs.logits
    probs = torch.softmax(logits, dim=1)[:, 1]
    key_sentence_idx = probs.argsort(descending=True)[:5]
    return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])

@app.route('/summarize', methods=['POST'])
def summarize_document():
    if 'file' not in request.files:
        return jsonify({"error": "No file uploaded"}), 400
    
    file = request.files['file']
    filename = file.filename
    file.seek(0, os.SEEK_END)
    file_size = file.tell()
    if file_size > MAX_FILE_SIZE:
        return jsonify({"error": f"File size exceeds {MAX_FILE_SIZE // (1024 * 1024)} MB"}), 413
    file.seek(0)
    file_path = os.path.join(UPLOAD_FOLDER, filename)
    try:
        file.save(file_path)
    except Exception as e:
        return jsonify({"error": f"Failed to save file: {str(e)}"}), 500

    try:
        if filename.endswith('.pdf'):
            text = extract_text_from_pdf(file_path)
        elif filename.endswith(('.png', '.jpeg', '.jpg')):
            text = extract_text_from_image(file_path)
        else:
            os.remove(file_path)
            return jsonify({"error": "Unsupported file format."}), 400
    except Exception as e:
        os.remove(file_path)
        return jsonify({"error": f"Text extraction failed: {str(e)}"}), 500

    if not text.strip():
        os.remove(file_path)
        return jsonify({"error": "No text extracted"}), 400

    try:
        model = choose_model(text)
        if model == "pegasus":
            summary = summarize_with_pegasus(text)
        elif model == "bert":
            summary = summarize_with_bert(text)
        elif model == "legalbert":
            summary = summarize_with_legalbert(text)
    except Exception as e:
        os.remove(file_path)
        return jsonify({"error": f"Summarization failed: {str(e)}"}), 500

    os.remove(file_path)
    return jsonify({"model_used": model, "summary": summary})

if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0', port=5000)