Spaces:
Runtime error
Runtime error
File size: 18,689 Bytes
a8d28cf 4a1a141 a8d28cf 4a1a141 a8d28cf 4a1a141 a8d28cf 4a1a141 a8d28cf bf65784 a8d28cf 4a1a141 a8d28cf 4a1a141 a8d28cf 4a1a141 a8d28cf 4a1a141 a8d28cf 4a1a141 a8d28cf 4a1a141 bf65784 a8d28cf 4a1a141 a8d28cf 4a1a141 a8d28cf 4a1a141 a8d28cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
# from flask import Flask, request, jsonify
# import os
# import pdfplumber
# import pytesseract
# from PIL import Image
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer
# import torch
# import logging
# app = Flask(__name__)
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # Load Pegasus Model (load once globally)
# logger.info("Loading Pegasus model and tokenizer...")
# tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
# model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum").to("cpu") # Force CPU to manage memory
# logger.info("Model loaded successfully.")
# # Extract text from PDF with page limit
# def extract_text_from_pdf(file_path, max_pages=5):
# text = ""
# try:
# with pdfplumber.open(file_path) as pdf:
# total_pages = len(pdf.pages)
# pages_to_process = min(total_pages, max_pages)
# logger.info(f"Extracting text from {pages_to_process} of {total_pages} pages in {file_path}")
# for i, page in enumerate(pdf.pages[:pages_to_process]):
# try:
# extracted = page.extract_text()
# if extracted:
# text += extracted + "\n"
# else:
# logger.info(f"No text on page {i+1}, attempting OCR...")
# image = page.to_image().original
# text += pytesseract.image_to_string(image) + "\n"
# except Exception as e:
# logger.warning(f"Error processing page {i+1}: {e}")
# continue
# except Exception as e:
# logger.error(f"Failed to process PDF {file_path}: {e}")
# return ""
# return text.strip()
# # Extract text from image (OCR)
# def extract_text_from_image(file_path):
# try:
# logger.info(f"Extracting text from image {file_path} using OCR...")
# image = Image.open(file_path)
# text = pytesseract.image_to_string(image)
# return text.strip()
# except Exception as e:
# logger.error(f"Failed to process image {file_path}: {e}")
# return ""
# # Summarize text with chunking for large inputs
# def summarize_text(text, max_input_length=512, max_output_length=150):
# try:
# logger.info("Summarizing text...")
# # Tokenize and truncate to max_input_length
# inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_input_length, padding=True)
# input_length = inputs["input_ids"].shape[1]
# logger.info(f"Input length: {input_length} tokens")
# # Adjust generation params for efficiency
# summary_ids = model.generate(
# inputs["input_ids"],
# max_length=max_output_length,
# min_length=30,
# num_beams=2, # Reduce beams for speedup
# early_stopping=True,
# length_penalty=1.0, # Encourage shorter outputs
# )
# summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# logger.info("Summarization completed.")
# return summary
# except Exception as e:
# logger.error(f"Error during summarization: {e}")
# return ""
# @app.route('/summarize', methods=['POST'])
# def summarize_document():
# if 'file' not in request.files:
# logger.error("No file uploaded in request.")
# return jsonify({"error": "No file uploaded"}), 400
# file = request.files['file']
# filename = file.filename
# if not filename:
# logger.error("Empty filename in request.")
# return jsonify({"error": "No file uploaded"}), 400
# file_path = os.path.join("/tmp", filename)
# try:
# file.save(file_path)
# logger.info(f"File saved to {file_path}")
# if filename.lower().endswith('.pdf'):
# text = extract_text_from_pdf(file_path, max_pages=2) # Reduce to 2 pages
# elif filename.lower().endswith(('.png', '.jpeg', '.jpg')):
# text = extract_text_from_image(file_path)
# else:
# logger.error(f"Unsupported file format: {filename}")
# return jsonify({"error": "Unsupported file format. Use PDF, PNG, JPEG, or JPG"}), 400
# if not text:
# logger.warning(f"No text extracted from {filename}")
# return jsonify({"error": "No text extracted from the file"}), 400
# summary = summarize_text(text)
# if not summary:
# logger.warning("Summarization failed to produce output.")
# return jsonify({"error": "Failed to generate summary"}), 500
# logger.info(f"Summary generated for {filename}")
# return jsonify({"summary": summary})
# except Exception as e:
# logger.error(f"Unexpected error processing {filename}: {e}")
# return jsonify({"error": str(e)}), 500
# finally:
# if os.path.exists(file_path):
# try:
# os.remove(file_path)
# logger.info(f"Cleaned up file: {file_path}")
# except Exception as e:
# logger.warning(f"Failed to delete {file_path}: {e}")
# if __name__ == '__main__':
# logger.info("Starting Flask app...")
# app.run(host='0.0.0.0', port=7860)
import os
import pdfplumber
from PIL import Image
import pytesseract
import numpy as np
from flask import Flask, request, jsonify
from flask_cors import CORS
from transformers import PegasusForConditionalGeneration, PegasusTokenizer, BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset, concatenate_datasets
import torch
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
app = Flask(__name__)
CORS(app)
UPLOAD_FOLDER = 'uploads'
PEGASUS_MODEL_DIR = 'fine_tuned_pegasus'
BERT_MODEL_DIR = 'fine_tuned_bert'
LEGALBERT_MODEL_DIR = 'fine_tuned_legalbert'
MAX_FILE_SIZE = 100 * 1024 * 1024
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
transformers.logging.set_verbosity_error()
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
# Pegasus Fine-Tuning
def load_or_finetune_pegasus():
if os.path.exists(PEGASUS_MODEL_DIR):
print("Loading fine-tuned Pegasus model...")
tokenizer = PegasusTokenizer.from_pretrained(PEGASUS_MODEL_DIR)
model = PegasusForConditionalGeneration.from_pretrained(PEGASUS_MODEL_DIR)
else:
print("Fine-tuning Pegasus on CNN/Daily Mail and XSUM...")
tokenizer = PegasusTokenizer.from_pretrained("google/pegasus-xsum")
model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
# Load and combine datasets
cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]") # 5K samples
xsum = load_dataset("xsum", split="train[:5000]") # 5K samples
combined_dataset = concatenate_datasets([cnn_dm, xsum])
def preprocess_function(examples):
inputs = tokenizer(examples["article"] if "article" in examples else examples["document"],
max_length=512, truncation=True, padding="max_length")
targets = tokenizer(examples["highlights"] if "highlights" in examples else examples["summary"],
max_length=400, truncation=True, padding="max_length")
inputs["labels"] = targets["input_ids"]
return inputs
tokenized_dataset = combined_dataset.map(preprocess_function, batched=True)
train_dataset = tokenized_dataset.select(range(8000)) # 80%
eval_dataset = tokenized_dataset.select(range(8000, 10000)) # 20%
training_args = TrainingArguments(
output_dir="./pegasus_finetune",
num_train_epochs=3, # Increased for better fine-tuning
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
trainer.save_model(PEGASUS_MODEL_DIR)
tokenizer.save_pretrained(PEGASUS_MODEL_DIR)
print(f"Fine-tuned Pegasus saved to {PEGASUS_MODEL_DIR}")
return tokenizer, model
# BERT Fine-Tuning
def load_or_finetune_bert():
if os.path.exists(BERT_MODEL_DIR):
print("Loading fine-tuned BERT model...")
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_DIR)
model = BertForSequenceClassification.from_pretrained(BERT_MODEL_DIR, num_labels=2)
else:
print("Fine-tuning BERT on CNN/Daily Mail for extractive summarization...")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
# Load dataset and preprocess for sentence classification
cnn_dm = load_dataset("cnn_dailymail", "3.0.0", split="train[:5000]")
def preprocess_for_extractive(examples):
sentences = []
labels = []
for article, highlights in zip(examples["article"], examples["highlights"]):
article_sents = article.split(". ")
highlight_sents = highlights.split(". ")
for sent in article_sents:
if sent.strip():
# Label as 1 if sentence is similar to any highlight, else 0
is_summary = any(sent.strip() in h for h in highlight_sents)
sentences.append(sent)
labels.append(1 if is_summary else 0)
return {"sentence": sentences, "label": labels}
dataset = cnn_dm.map(preprocess_for_extractive, batched=True, remove_columns=["article", "highlights", "id"])
tokenized_dataset = dataset.map(
lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
batched=True
)
tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
training_args = TrainingArguments(
output_dir="./bert_finetune",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
trainer.save_model(BERT_MODEL_DIR)
tokenizer.save_pretrained(BERT_MODEL_DIR)
print(f"Fine-tuned BERT saved to {BERT_MODEL_DIR}")
return tokenizer, model
# LegalBERT Fine-Tuning
def load_or_finetune_legalbert():
if os.path.exists(LEGALBERT_MODEL_DIR):
print("Loading fine-tuned LegalBERT model...")
tokenizer = BertTokenizer.from_pretrained(LEGALBERT_MODEL_DIR)
model = BertForSequenceClassification.from_pretrained(LEGALBERT_MODEL_DIR, num_labels=2)
else:
print("Fine-tuning LegalBERT on Billsum for extractive summarization...")
tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased", num_labels=2)
# Load dataset
billsum = load_dataset("billsum", split="train[:5000]")
def preprocess_for_extractive(examples):
sentences = []
labels = []
for text, summary in zip(examples["text"], examples["summary"]):
text_sents = text.split(". ")
summary_sents = summary.split(". ")
for sent in text_sents:
if sent.strip():
is_summary = any(sent.strip() in s for s in summary_sents)
sentences.append(sent)
labels.append(1 if is_summary else 0)
return {"sentence": sentences, "label": labels}
dataset = billsum.map(preprocess_for_extractive, batched=True, remove_columns=["text", "summary", "title"])
tokenized_dataset = dataset.map(
lambda x: tokenizer(x["sentence"], max_length=512, truncation=True, padding="max_length"),
batched=True
)
tokenized_dataset = tokenized_dataset.remove_columns(["sentence"])
train_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset))))
eval_dataset = tokenized_dataset.select(range(int(0.8 * len(tokenized_dataset)), len(tokenized_dataset)))
training_args = TrainingArguments(
output_dir="./legalbert_finetune",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=10,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
trainer.save_model(LEGALBERT_MODEL_DIR)
tokenizer.save_pretrained(LEGALBERT_MODEL_DIR)
print(f"Fine-tuned LegalBERT saved to {LEGALBERT_MODEL_DIR}")
return tokenizer, model
# Load models
pegasus_tokenizer, pegasus_model = load_or_finetune_pegasus()
bert_tokenizer, bert_model = load_or_finetune_bert()
legalbert_tokenizer, legalbert_model = load_or_finetune_legalbert()
def extract_text_from_pdf(file_path):
text = ""
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
text += page.extract_text() or ""
return text
def extract_text_from_image(file_path):
image = Image.open(file_path)
text = pytesseract.image_to_string(image)
return text
def choose_model(text):
legal_keywords = ["court", "legal", "law", "judgment", "contract", "statute", "case"]
tfidf = TfidfVectorizer(vocabulary=legal_keywords)
tfidf_matrix = tfidf.fit_transform([text.lower()])
score = np.sum(tfidf_matrix.toarray())
if score > 0.1:
return "legalbert"
elif len(text.split()) > 50:
return "pegasus"
else:
return "bert"
def summarize_with_pegasus(text):
inputs = pegasus_tokenizer(text, truncation=True, padding="longest", return_tensors="pt", max_length=512)
summary_ids = pegasus_model.generate(
inputs["input_ids"],
max_length=400, min_length=80, length_penalty=1.5, num_beams=4
)
return pegasus_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
def summarize_with_bert(text):
sentences = text.split(". ")
if len(sentences) < 6: # Ensure enough for 5 sentences
return text
inputs = bert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = bert_model(**inputs)
logits = outputs.logits
probs = torch.softmax(logits, dim=1)[:, 1] # Probability of being a summary sentence
key_sentence_idx = probs.argsort(descending=True)[:5] # Top 5 sentences
return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])
def summarize_with_legalbert(text):
sentences = text.split(". ")
if len(sentences) < 6:
return text
inputs = legalbert_tokenizer(sentences, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = legalbert_model(**inputs)
logits = outputs.logits
probs = torch.softmax(logits, dim=1)[:, 1]
key_sentence_idx = probs.argsort(descending=True)[:5]
return ". ".join([sentences[idx] for idx in key_sentence_idx if sentences[idx].strip()])
@app.route('/summarize', methods=['POST'])
def summarize_document():
if 'file' not in request.files:
return jsonify({"error": "No file uploaded"}), 400
file = request.files['file']
filename = file.filename
file.seek(0, os.SEEK_END)
file_size = file.tell()
if file_size > MAX_FILE_SIZE:
return jsonify({"error": f"File size exceeds {MAX_FILE_SIZE // (1024 * 1024)} MB"}), 413
file.seek(0)
file_path = os.path.join(UPLOAD_FOLDER, filename)
try:
file.save(file_path)
except Exception as e:
return jsonify({"error": f"Failed to save file: {str(e)}"}), 500
try:
if filename.endswith('.pdf'):
text = extract_text_from_pdf(file_path)
elif filename.endswith(('.png', '.jpeg', '.jpg')):
text = extract_text_from_image(file_path)
else:
os.remove(file_path)
return jsonify({"error": "Unsupported file format."}), 400
except Exception as e:
os.remove(file_path)
return jsonify({"error": f"Text extraction failed: {str(e)}"}), 500
if not text.strip():
os.remove(file_path)
return jsonify({"error": "No text extracted"}), 400
try:
model = choose_model(text)
if model == "pegasus":
summary = summarize_with_pegasus(text)
elif model == "bert":
summary = summarize_with_bert(text)
elif model == "legalbert":
summary = summarize_with_legalbert(text)
except Exception as e:
os.remove(file_path)
return jsonify({"error": f"Summarization failed: {str(e)}"}), 500
os.remove(file_path)
return jsonify({"model_used": model, "summary": summary})
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0', port=5000) |