Manoj Acharya
commited on
Commit
·
872d649
1
Parent(s):
f4247be
Nearest B or M
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ def format_params(params):
|
|
8 |
return str(params)
|
9 |
|
10 |
def calculate_training_memory(params, precision, batch_size, seq_length, num_heads, head_dim, num_layers):
|
11 |
-
bytes_per_param = 2 if precision in ["FP16", "BF16"] else 4
|
12 |
|
13 |
# Model Weights
|
14 |
model_memory = params * bytes_per_param
|
@@ -28,7 +28,7 @@ def calculate_training_memory(params, precision, batch_size, seq_length, num_hea
|
|
28 |
return f"Model Weights: {model_memory / 1e9:.2f} GB\nOptimizer: {optimizer_memory / 1e9:.2f} GB\nGradients: {gradient_memory / 1e9:.2f} GB\nActivation Memory: {activation_memory / 1e9:.2f} GB\nTotal Training Memory: {total_memory / 1e9:.2f} GB"
|
29 |
|
30 |
def calculate_inference_memory(params, precision, batch_size, seq_length, num_heads, head_dim, num_layers):
|
31 |
-
bytes_per_param = 2 if precision in ["FP16", "BF16"] else 4
|
32 |
|
33 |
# Model Weights
|
34 |
model_memory = params * bytes_per_param
|
@@ -42,7 +42,7 @@ def calculate_inference_memory(params, precision, batch_size, seq_length, num_he
|
|
42 |
return f"Model Weights: {model_memory / 1e9:.2f} GB\nKV Cache: {kv_cache_memory / 1e9:.2f} GB\nTotal Inference Memory: {total_memory / 1e9:.2f} GB"
|
43 |
|
44 |
def calculate_kv_cache(batch_size, seq_length, num_heads, head_dim, num_layers, precision):
|
45 |
-
bytes_per_param = 2 if precision in ["FP16", "BF16"] else 4
|
46 |
|
47 |
# KV Cache Calculation
|
48 |
kv_cache_memory = batch_size * seq_length * num_heads * head_dim * 2 * num_layers * bytes_per_param
|
@@ -56,7 +56,7 @@ with gr.Blocks() as app:
|
|
56 |
with gr.Tab("Training Memory Calculation"):
|
57 |
with gr.Row():
|
58 |
params = gr.Number(label="Number of Parameters (e.g., 175B = 175e9)", value=175e9)
|
59 |
-
precision = gr.Radio(["FP16/BF16", "FP32"], label="Precision", value="FP16")
|
60 |
with gr.Row():
|
61 |
batch_size = gr.Number(label="Batch Size", value=1)
|
62 |
seq_length = gr.Number(label="Sequence Length", value=2048)
|
@@ -71,7 +71,7 @@ with gr.Blocks() as app:
|
|
71 |
with gr.Tab("Inference Memory Calculation"):
|
72 |
with gr.Row():
|
73 |
params_inf = gr.Number(label="Number of Parameters (e.g., 175B = 175e9)", value=175e9)
|
74 |
-
precision_inf = gr.Radio(["FP16/BF16", "FP32"], label="Precision", value="FP16")
|
75 |
with gr.Row():
|
76 |
batch_size_inf = gr.Number(label="Batch Size", value=1)
|
77 |
seq_length_inf = gr.Number(label="Sequence Length", value=2048)
|
@@ -91,7 +91,7 @@ with gr.Blocks() as app:
|
|
91 |
num_heads_kv = gr.Number(label="Number of Attention Heads", value=96)
|
92 |
head_dim_kv = gr.Number(label="Head Dimension", value=128)
|
93 |
num_layers_kv = gr.Number(label="Number of Layers", value=96)
|
94 |
-
precision_kv = gr.Radio(["FP16/BF16", "FP32"], label="Precision", value="FP16")
|
95 |
kv_button = gr.Button("Calculate KV Cache Memory")
|
96 |
kv_output = gr.Textbox(label="KV Cache Memory Usage")
|
97 |
kv_button.click(calculate_kv_cache, [batch_size_kv, seq_length_kv, num_heads_kv, head_dim_kv, num_layers_kv, precision_kv], kv_output)
|
|
|
8 |
return str(params)
|
9 |
|
10 |
def calculate_training_memory(params, precision, batch_size, seq_length, num_heads, head_dim, num_layers):
|
11 |
+
bytes_per_param = 2 if precision in ["FP16/BF16", "BF16"] else 4
|
12 |
|
13 |
# Model Weights
|
14 |
model_memory = params * bytes_per_param
|
|
|
28 |
return f"Model Weights: {model_memory / 1e9:.2f} GB\nOptimizer: {optimizer_memory / 1e9:.2f} GB\nGradients: {gradient_memory / 1e9:.2f} GB\nActivation Memory: {activation_memory / 1e9:.2f} GB\nTotal Training Memory: {total_memory / 1e9:.2f} GB"
|
29 |
|
30 |
def calculate_inference_memory(params, precision, batch_size, seq_length, num_heads, head_dim, num_layers):
|
31 |
+
bytes_per_param = 2 if precision in ["FP16/BF16", "BF16"] else 4
|
32 |
|
33 |
# Model Weights
|
34 |
model_memory = params * bytes_per_param
|
|
|
42 |
return f"Model Weights: {model_memory / 1e9:.2f} GB\nKV Cache: {kv_cache_memory / 1e9:.2f} GB\nTotal Inference Memory: {total_memory / 1e9:.2f} GB"
|
43 |
|
44 |
def calculate_kv_cache(batch_size, seq_length, num_heads, head_dim, num_layers, precision):
|
45 |
+
bytes_per_param = 2 if precision in ["FP16/BF16", "BF16"] else 4
|
46 |
|
47 |
# KV Cache Calculation
|
48 |
kv_cache_memory = batch_size * seq_length * num_heads * head_dim * 2 * num_layers * bytes_per_param
|
|
|
56 |
with gr.Tab("Training Memory Calculation"):
|
57 |
with gr.Row():
|
58 |
params = gr.Number(label="Number of Parameters (e.g., 175B = 175e9)", value=175e9)
|
59 |
+
precision = gr.Radio(["FP16/BF16", "FP32"], label="Precision", value="FP16/BF16")
|
60 |
with gr.Row():
|
61 |
batch_size = gr.Number(label="Batch Size", value=1)
|
62 |
seq_length = gr.Number(label="Sequence Length", value=2048)
|
|
|
71 |
with gr.Tab("Inference Memory Calculation"):
|
72 |
with gr.Row():
|
73 |
params_inf = gr.Number(label="Number of Parameters (e.g., 175B = 175e9)", value=175e9)
|
74 |
+
precision_inf = gr.Radio(["FP16/BF16", "FP32"], label="Precision", value="FP16/BF16")
|
75 |
with gr.Row():
|
76 |
batch_size_inf = gr.Number(label="Batch Size", value=1)
|
77 |
seq_length_inf = gr.Number(label="Sequence Length", value=2048)
|
|
|
91 |
num_heads_kv = gr.Number(label="Number of Attention Heads", value=96)
|
92 |
head_dim_kv = gr.Number(label="Head Dimension", value=128)
|
93 |
num_layers_kv = gr.Number(label="Number of Layers", value=96)
|
94 |
+
precision_kv = gr.Radio(["FP16/BF16", "FP32"], label="Precision", value="FP16/BF16")
|
95 |
kv_button = gr.Button("Calculate KV Cache Memory")
|
96 |
kv_output = gr.Textbox(label="KV Cache Memory Usage")
|
97 |
kv_button.click(calculate_kv_cache, [batch_size_kv, seq_length_kv, num_heads_kv, head_dim_kv, num_layers_kv, precision_kv], kv_output)
|