Spaces:
Running
Running
File size: 6,338 Bytes
751e7d4 085880a d2daf95 f7a9983 3b5590f 401ca9f b98f2e5 99d2505 085880a d2daf95 f7a9983 d2daf95 d950565 d2daf95 99d2505 71c83be 5c9a3e1 962509d b98f2e5 33826e4 5c32781 33826e4 b98f2e5 0e2ac66 55dbaf1 99d2505 55dbaf1 0e2ac66 131f73e 9aa49ac 131f73e 962509d ed7f73f 962509d 751e7d4 d2daf95 33826e4 d2daf95 5c32781 eacc8e2 99d2505 eacc8e2 b98f2e5 5c32781 99d2505 401ca9f 3b5590f 4c74a4e 3b5590f 33826e4 12aabf0 d2daf95 f94eede 9352ef2 f94eede 9352ef2 f94eede d2daf95 9352ef2 d2daf95 2275821 0f3cefd acb08b7 5d46926 b98f2e5 33826e4 d2daf95 2275821 b98f2e5 3691388 b98f2e5 6772cf6 5c32781 f52ce74 5c32781 e1952ef d2daf95 6772cf6 a29437c 6772cf6 a29437c 6772cf6 085880a a3b4442 f52ce74 d2daf95 99d2505 0eab080 d2daf95 9aa49ac 33826e4 d2daf95 0eab080 33826e4 0eab080 33826e4 7729daa 33826e4 7729daa 33826e4 5c32781 33826e4 d2daf95 085880a 6159031 33826e4 b98f2e5 5c32781 e1952ef 5c9a3e1 085880a 4dd59d6 d2daf95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import os
import gradio as gr
from gradio.utils import get_space
from huggingface_hub import InferenceClient
from e2b_code_interpreter import Sandbox
from pathlib import Path
from transformers import AutoTokenizer
import json
from openai import OpenAI
from huggingface_hub import HfApi, HfFolder
from jupyter_handler import JupyterNotebook
if not get_space():
try:
from dotenv import load_dotenv
load_dotenv()
except (ImportError, ModuleNotFoundError):
pass
from utils import (
run_interactive_notebook,
)
E2B_API_KEY = os.environ["E2B_API_KEY"]
HF_TOKEN = os.environ["HF_TOKEN"] #HfFolder.get_token() #
DEFAULT_MAX_TOKENS = 512
SANDBOXES = {}
SANDBOX_TIMEOUT = 300
TMP_DIR = './tmp/'
model="Qwen/Qwen3-Coder-480B-A35B-Instruct:cerebras"
init_notebook = JupyterNotebook()
if not os.path.exists(TMP_DIR):
os.makedirs(TMP_DIR)
with open(TMP_DIR+"jupyter-agent.ipynb", 'w', encoding='utf-8') as f:
json.dump(JupyterNotebook().data, f, indent=2)
with open("ds-system-prompt.txt", "r") as f:
DEFAULT_SYSTEM_PROMPT = f.read()
DEFAULT_SYSTEM_PROMPT = """You are a coding agent with access to a Jupyter Kernel. \
When possible break down tasks step-by-step. \
The following files are available (if any):
{}
List of available packages:
# Jupyter server requirements
jupyter-server==2.16.0
ipykernel==6.29.5
ipython==9.2.0
orjson==3.10.18
pandas==2.2.3
matplotlib==3.10.3
pillow==11.3.0
# Latest version for
e2b_charts
# Other packages
aiohttp==3.12.14
beautifulsoup4==4.13.4
bokeh==3.7.3
gensim==4.3.3 # unmaintained, blocking numpy and scipy bump
imageio==2.37.0
joblib==1.5.0
librosa==0.11.0
nltk==3.9.1
numpy==1.26.4 # bump blocked by gensim
numba==0.61.2
opencv-python==4.11.0.86
openpyxl==3.1.5
plotly==6.0.1
kaleido==1.0.0
pytest==8.3.5
python-docx==1.1.2
pytz==2025.2
requests==2.32.4
scikit-image==0.25.2
scikit-learn==1.6.1
scipy==1.13.1 # bump blocked by gensim
seaborn==0.13.2
soundfile==0.13.1
spacy==3.8.2 # doesn't work on 3.13.x
textblob==0.19.0
tornado==6.5.1
urllib3==2.5.0
xarray==2025.4.0
xlrd==2.0.1
sympy==1.14.0
If you need to install additional packages:
1. install uv first with `pip install uv`
2. then use uv to install the package with `uv pip install PACKAGE_NAME --system`.
"""
def execute_jupyter_agent(
user_input, files, message_history, request: gr.Request
):
if request.session_hash not in SANDBOXES:
SANDBOXES[request.session_hash] = Sandbox(api_key=E2B_API_KEY, timeout=SANDBOX_TIMEOUT)
sbx = SANDBOXES[request.session_hash]
save_dir = os.path.join(TMP_DIR, request.session_hash)
os.makedirs(save_dir, exist_ok=True)
save_dir = os.path.join(save_dir, 'jupyter-agent.ipynb')
with open(save_dir, 'w', encoding='utf-8') as f:
json.dump(init_notebook.data, f, indent=2)
yield init_notebook.render(), message_history, save_dir
client = OpenAI(
base_url="https://router.huggingface.co/v1",
api_key=HF_TOKEN,
)
filenames = []
if files is not None:
for filepath in files:
filpath = Path(filepath)
with open(filepath, "rb") as file:
print(f"uploading {filepath}...")
sbx.files.write(filpath.name, file)
filenames.append(filpath.name)
sytem_prompt = DEFAULT_SYSTEM_PROMPT
# Initialize message_history if it doesn't exist
if len(message_history) == 0:
if files is None:
sytem_prompt = sytem_prompt.format("- None")
else:
sytem_prompt = sytem_prompt.format("- " + "\n- ".join(filenames))
message_history.append(
{
"role": "system",
"content": sytem_prompt,
}
)
message_history.append({"role": "user", "content": user_input})
#print("history:", message_history)
for notebook_html, notebook_data, messages in run_interactive_notebook(
client, model, message_history, sbx,
):
message_history = messages
yield notebook_html, message_history, TMP_DIR+"jupyter-agent.ipynb"
with open(save_dir, 'w', encoding='utf-8') as f:
json.dump(notebook_data, f, indent=2)
yield notebook_html, message_history, save_dir
def clear(msg_state, request: gr.Request):
if request.session_hash in SANDBOXES:
SANDBOXES[request.session_hash].kill()
SANDBOXES.pop(request.session_hash)
msg_state = []
return init_notebook.render(), msg_state
css = """
#component-0 {
height: 100vh;
overflow-y: auto;
padding: 20px;
}
.gradio-container {
height: 100vh !important;
}
.contain {
height: 100vh !important;
}
"""
# Create the interface
with gr.Blocks() as demo:
msg_state = gr.State(value=[])
html_output = gr.HTML(value=JupyterNotebook().render())
user_input = gr.Textbox(
#value="Write code to multiply three numbers: 10048, 32, 19", lines=3, label="User input"
value="Solve the Lotka-Volterra equation and plot the results. Do it step by step and explain what you are doing and in the end make a super nice and clean plot.", label="Agent task"
)
with gr.Row():
generate_btn = gr.Button("Run!")
clear_btn = gr.Button("Clear Notebook")
with gr.Accordion("Upload files ⬆ | Download notebook⬇", open=False):
files = gr.File(label="Upload files to use", file_count="multiple")
file = gr.File(TMP_DIR+"jupyter-agent.ipynb", label="Download Jupyter Notebook")
powered_html = gr.HTML("""\
<p align="center">
<img style="max-height:100px; max-width:100%; height:auto;"src="https://huggingface.co/spaces/lvwerra/jupyter-agent-2/resolve/main/powered-by.png" alt="Powered by" />
</p>""")
generate_btn.click(
fn=execute_jupyter_agent,
inputs=[user_input, files, msg_state],
outputs=[html_output, msg_state, file],
show_progress="hidden",
)
clear_btn.click(fn=clear, inputs=[msg_state], outputs=[html_output, msg_state])
demo.load(
fn=None,
inputs=None,
outputs=None,
js=""" () => {
if (document.querySelectorAll('.dark').length) {
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
}
}
"""
)
demo.launch(ssr_mode=False)
|