# app.py import os import gradio as gr import torch import requests from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer from monai.networks.nets import DenseNet121 import torchxrayvision as xrv # Configuration DEEPSEEK_API_URL = "https://api.deepseek.com/v1/chat/completions" DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY") # Set in Hugging Face secrets DISCLAIMER = """
⚠️ WARNING: This is a prototype demonstration only. NOT ACTUAL MEDICAL ADVICE. DO NOT USE FOR REAL HEALTH DECISIONS. CONSULT LICENSED PROFESSIONALS.
""" class MedicalAssistant: def __init__(self): # Medical imaging models self.medical_models = self._init_imaging_models() # Clinical text processing self.prescription_parser = pipeline( "token-classification", model="obi/deid_bert_i2b2", tokenizer="obi/deid_bert_i2b2" ) # Safety systems self.safety_filter = pipeline( "text-classification", model="Hate-speech-CNERG/dehatebert-mono-english" ) def _init_imaging_models(self): """Initialize medical imaging models""" return { "xray": xrv.models.DenseNet(weights="densenet121-res224-all"), "ct": DenseNet121(spatial_dims=3, in_channels=1, out_channels=14), "histo": torch.hub.load('pytorch/vision', 'resnet50', pretrained=True) } def query_deepseek(self, prompt: str): """Query DeepSeek API""" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {DEEPSEEK_API_KEY}", "Accept": "application/json" } payload = { "model": "deepseek-chat", "messages": [{ "role": "user", "content": f"MEDICAL PROMPT: {prompt}\nRespond with research-supported medical information. Cite sources from peer-reviewed journals." }], "temperature": 0.3, "max_tokens": 600, "top_p": 0.95 } try: response = requests.post( DEEPSEEK_API_URL, headers=headers, json=payload, timeout=30 ) response.raise_for_status() return response.json()['choices'][0]['message']['content'] except requests.HTTPError as e: error_detail = response.json().get('error', {}).get('message', 'Unknown error') return f"API Error {e.response.status_code}: {error_detail}" except Exception as e: return f"Connection Error: {str(e)}" # Rest of the class remains the same... # Initialize system assistant = MedicalAssistant() def process_input(query, image, prescription): context = {} if image is not None: context["image_analysis"] = assistant.analyze_image(image, "xray") if prescription: context["prescription"] = assistant.parse_prescription(prescription) return assistant.generate_response(query, context) # Gradio interface interface = gr.Interface( fn=process_input, inputs=[ gr.Textbox(label="Medical Query", placeholder="Enter your medical question..."), gr.Image(label="Medical Imaging", type="filepath"), gr.Textbox(label="Prescription Text") ], outputs=gr.Textbox(label="Research-Backed Response"), title="AI Medical Research Assistant", description=DISCLAIMER, allow_flagging="never" ) interface.launch()