import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import os model_name = "TheBloke/MythoMax-L2-13B-GGUF" # change this for OpenHermes # Use token from environment hf_token = os.environ.get("HF_TOKEN") tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token, torch_dtype=torch.float16) def chat(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) reply = tokenizer.decode(outputs[0], skip_special_tokens=True) return reply demo = gr.Interface(fn=chat, inputs="text", outputs="text") demo.launch()