File size: 8,440 Bytes
2018b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
from datasets import disable_caching, load_dataset
from transformer_ranker import TransformerRanker

from demo.config import SAMPLE_SIZE, MAX_SAMPLE_SIZE, ALL_LMS, PRESELECTED_LMS, GRADIO_THEME
from demo.utils import (
    BANNER, FOOTER, CSS, UNSET,
    EmbeddingProgressTracker, compute_ratio,
    validate_dataset, preprocess_dataset, ensure_dataset_is_loaded
)


disable_caching()

with gr.Blocks(css=CSS, theme=None) as demo:

    gr.Markdown(BANNER)

    ##### 1. Load from datasets #####

    gr.Markdown("## Load Downstream Dataset")

    gr.Markdown(
        "Select a dataset from the Hugging Face Hub such as `trec`. "
        "This defines your downstream task."
    )

    with gr.Group():
        dataset = gr.State(None)

        dataset_id = gr.Textbox(
            label="Dataset name",
            placeholder="try: trec, conll2003, ag_news",
            max_lines=1,
        )

        load_dataset_button = gr.Button(value="Load data", variant="primary", interactive=True,)

        # enable loading if dataset exists on hub
        dataset_id.change(validate_dataset, inputs=dataset_id, outputs=load_dataset_button)

    gr.Markdown(
        "Settings auto-configured. "
        "Adjust the downsampling ratio in Dataset Setup, "
        "or use the complete dataset with the [framework](https://github.com/flairNLP/transformer-ranker)."
    )

    ##### data preprocessing #####

    with gr.Accordion("Dataset Setup", open=False) as dataset_config:
        with gr.Row() as dataset_details:
            dataset_id_label = gr.Label("", label="Dataset")
            num_samples = gr.State(0)
            num_samples_label = gr.Label("", label="Dataset size")
            num_samples.change(
                lambda x: str(x), inputs=[num_samples], outputs=[num_samples_label]
            )

        with gr.Row():
            text_column = gr.Dropdown("", label="Text Column")
            text_pair_column = gr.Dropdown("", label="Text Pair")

        with gr.Row():
            label_column = gr.Dropdown("", label="Labels")
            task_category = gr.Dropdown("", label="Downstream Task")

        with gr.Group():
            downsample_ratio = gr.State(0.0)
            sampling_rate = gr.Slider(
                20, MAX_SAMPLE_SIZE, label="Sampling rate", value=SAMPLE_SIZE, step=1
            )
            downsample_ratio_label = gr.Label("", label="Sampling rate")
            downsample_ratio.change(
                lambda x: f"{x:.1%}",
                inputs=[downsample_ratio],
                outputs=[downsample_ratio_label],
            )

            sampling_rate.change(
                compute_ratio,
                inputs=[sampling_rate, num_samples],
                outputs=downsample_ratio,
            )
            num_samples.change(
                compute_ratio,
                inputs=[sampling_rate, num_samples],
                outputs=downsample_ratio,
            )

    # load and show details
    def load_hf_dataset(dataset_id):
        try:
            dataset = load_dataset(dataset_id, trust_remote_code=True)
            dataset_details = preprocess_dataset(dataset)
        except ValueError as e:
            gr.Warning("Collections not supported. Load one dataset only.")

        return (
            gr.update(value="Loaded"),
            dataset_id,
            dataset,
            *dataset_details
        )

    load_dataset_button.click(
        load_hf_dataset,
        inputs=[dataset_id],
        outputs=[
            load_dataset_button,
            dataset_id_label,
            dataset,
            task_category,
            text_column,
            text_pair_column,
            label_column,
            num_samples,
        ],
        scroll_to_output=True,
    )

    ########## 2. Select LMs ##########

    gr.Markdown("## Select Language Models")

    gr.Markdown(
        "Add two or more pretrained models for ranking. "
        "Go with small models since this demo runs on CPU."
    )

    with gr.Group():
        model_options = [
            (model_handle.split("/")[-1], model_handle)
            for model_handle in ALL_LMS
        ]
        models = gr.CheckboxGroup(
            choices=model_options, label="Model List", value=PRESELECTED_LMS
        )

    ########## 3. Run ranking ##########

    gr.Markdown("## Rank Language Models")

    gr.Markdown(
        "Rank models by transferability to your downstream task. "
        "Adjust the metric and layer aggregation in Advanced Settings."
    )

    with gr.Group():

        submit_button = gr.Button("Run ranking", variant="primary", interactive=False)

        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                estimator = gr.Dropdown(
                    choices=["hscore", "logme", "knn"],
                    label="Transferability metric",
                    value="hscore",
                )
                layer_aggregator = gr.Dropdown(
                    choices=["lastlayer", "layermean", "bestlayer"],
                    label="Layer aggregation",
                    value="layermean",
                )

        # ranking button works after dataset loads
        dataset.change(
            ensure_dataset_is_loaded,
            inputs=[dataset, text_column, label_column, task_category],
            outputs=submit_button
        )

        label_column.change(
            ensure_dataset_is_loaded,
            inputs=[dataset, text_column, label_column, task_category],
            outputs=submit_button
        )

        text_column.change(
            ensure_dataset_is_loaded,
            inputs=[dataset, text_column, label_column, task_category],
            outputs=submit_button
        )

    def rank_models(
        dataset,
        downsample_ratio,
        selected_models,
        layer_aggregator,
        estimator,
        text_column,
        text_pair_column,
        label_column,
        task_category,
        progress=gr.Progress(),
    ):

        if text_column == UNSET:
            raise gr.Error("Text column is not set.")

        if label_column == UNSET:
            raise gr.Error("Label column is not set.")

        if task_category == UNSET:
            raise gr.Error(
                "Task category not set. Dataset must support classification or regression."
            )

        if text_pair_column == UNSET:
            text_pair_column = None

        progress(0.0, "Starting")

        with EmbeddingProgressTracker(progress=progress, model_names=selected_models) as tracker:
            try:
                ranker = TransformerRanker(
                    dataset,
                    dataset_downsample=downsample_ratio,
                    text_column=text_column,
                    text_pair_column=text_pair_column,
                    label_column=label_column,
                    task_category=task_category,
                )

                results = ranker.run(
                    models=selected_models,
                    layer_aggregator=layer_aggregator,
                    estimator=estimator,
                    batch_size=64,
                    tracker=tracker,
                )

                sorted_results = sorted(
                    results._results.items(), key=lambda item: item[1], reverse=True
                )
                return [
                    (i + 1, model, score) for i, (model, score) in enumerate(sorted_results)
                ]
            except Exception as e:
                print(e)
                gr.Warning(f"Ranking issue: {e}")
                return []

    gr.Markdown("Ranking table → higher scores indicate better downstream performance.")

    ranking_results = gr.Dataframe(
        headers=["Rank", "Model", "Score"],
        datatype=["number", "str", "number"],
        value=[["-", "-", "-"]]
    )

    submit_button.click(
        rank_models,
        inputs=[
            dataset,
            downsample_ratio,
            models,
            layer_aggregator,
            estimator,
            text_column,
            text_pair_column,
            label_column,
            task_category,
        ],
        outputs=ranking_results,
        scroll_to_output=True,
    )

    gr.Markdown(FOOTER)

if __name__ == "__main__":

    # run up to 3 requests at once
    demo.queue(default_concurrency_limit=3)

    # run with 6 workers
    demo.launch(max_threads=6)