Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import torch | |
import itertools # Import itertools for color cycling | |
from bytelatent.data.file_util import get_fs | |
from bytelatent.generate_patcher import patcher_nocache | |
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer | |
from bytelatent.plotting.entropy_figure_via_matplot_lib import plot_entropies | |
from bytelatent.args import TrainArgs | |
from download_blt_weights import main as ensure_present | |
# --- Global Setup (Consider loading models outside if necessary) --- | |
# Kept inside the function for simplicity as before. | |
# Define colors for patches (similar to the image style) | |
# Using colors from a qualitative colormap (e.g., Colorbrewer Set3 or Paired) | |
PATCH_COLORS = [ | |
"#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c", | |
"#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928" | |
] # Add more if you expect many patches | |
def create_highlighted_text_data(tokenizer, patch_lengths_tensor, tokens_tensor, colors): | |
""" | |
Generates the data structure needed for gr.HighlightedText based on patches. | |
Args: | |
tokenizer: The BltTokenizer instance. | |
patch_lengths_tensor: Tensor containing the length of each patch (in tokens). | |
tokens_tensor: Tensor containing the token IDs for the entire sequence. | |
colors: A list of color hex codes to cycle through. | |
Returns: | |
A list of tuples for gr.HighlightedText, e.g., [(text, label), ...]. | |
Returns None if input tensors are invalid. | |
""" | |
if patch_lengths_tensor is None or tokens_tensor is None or patch_lengths_tensor.numel() == 0: | |
return None | |
patch_lengths = patch_lengths_tensor.tolist() | |
all_tokens = tokens_tensor.tolist() | |
highlighted_data = [] | |
current_token_index = 0 | |
color_cycler = itertools.cycle(colors) # Use itertools to cycle through colors | |
for i, length in enumerate(patch_lengths): | |
if length <= 0: # Skip empty patches if they somehow occur | |
continue | |
patch_token_ids = all_tokens[current_token_index : current_token_index + length] | |
if not patch_token_ids: # Should not happen if length > 0, but good practice | |
continue | |
patch_text = tokenizer.decode(patch_token_ids) | |
patch_label = f"Patch {i+1}" # Unique label for each patch | |
patch_color = next(color_cycler) # Get the next color | |
# Add to highlighted_data: (text, label_for_coloring) | |
highlighted_data.append((patch_text, patch_label)) | |
current_token_index += length | |
# Check if all tokens were consumed (optional sanity check) | |
if current_token_index != len(all_tokens): | |
print(f"Warning: Token mismatch. Consumed {current_token_index}, total {len(all_tokens)}") | |
# Decode any remaining tokens if necessary, though this indicates a logic issue | |
remaining_tokens = all_tokens[current_token_index:] | |
if remaining_tokens: | |
remaining_text = tokenizer.decode(remaining_tokens) | |
highlighted_data.append((remaining_text, "Remainder")) # Assign a generic label | |
return highlighted_data | |
def process_text(prompt: str, model_name: str = "blt-1b"): | |
""" | |
Processes the input prompt using the ByteLatent model and returns | |
an entropy plot and color-coded text data. | |
Args: | |
prompt: The input text string from the Gradio interface. | |
model_name: The name of the model to use. | |
Returns: | |
A tuple containing: | |
- Matplotlib Figure for the entropy plot (or None on error). | |
- List of tuples for gr.HighlightedText (or None on error/no results). | |
- Error message string (or None if successful). | |
""" | |
try: | |
# --- Model and Tokenizer Loading --- | |
consolidated_path = os.path.join("hf-weights", model_name) | |
train_args_path = os.path.join(consolidated_path, "params.json") | |
if not os.path.exists(train_args_path): | |
raise FileNotFoundError(f"Training args not found at {train_args_path}. " | |
f"Ensure model '{model_name}' is downloaded/available.") | |
fs = get_fs(train_args_path) | |
train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path)) | |
tokenizer = train_args.data.tokenizer_args.build() | |
assert isinstance(tokenizer, BltTokenizer) | |
patcher_args = train_args.data.patcher_args.model_copy(deep=True) | |
patcher_args.realtime_patching = True | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
patcher_args.patching_device = device | |
patcher_args.device = device | |
print("Loading entropy model and patcher...") | |
entropy_model_dir = os.path.join(consolidated_path, "entropy_model") | |
if not os.path.exists(entropy_model_dir): | |
raise FileNotFoundError(f"Entropy model directory not found at {entropy_model_dir}.") | |
patcher_args.entropy_model_checkpoint_dir = entropy_model_dir | |
patcher = patcher_args.build() | |
# --- End Loading --- | |
# --- Processing --- | |
prompts = [prompt] | |
print(f"Processing prompt: '{prompt}'") | |
results = patcher_nocache( | |
prompts, tokenizer=tokenizer, patcher=patcher | |
) | |
if not results: | |
print("Processing returned no results.") | |
return None, None, "Processing completed, but no results were generated." | |
batch_patch_lengths, batch_scores, batch_tokens = results | |
# Process the first (and only) result in the batch | |
patch_lengths = batch_patch_lengths[0] | |
scores = batch_scores[0] | |
tokens = batch_tokens[0] | |
# Decode the full output once for the plot labels (if needed by plot_entropies) | |
# Note: BltTokenizer might decode directly to bytes, then utf-8. Ensure it handles errors. | |
try: | |
# Using the raw tokens tensor for decoding consistency | |
decoded_output_for_plot = tokenizer.decode(tokens.tolist()) | |
except Exception as decode_err: | |
print(f"Warning: Error decoding full sequence for plot: {decode_err}") | |
# Fallback: attempt to decode the original prompt if possible, or use generic labels | |
decoded_output_for_plot = prompt # Use original prompt as fallback | |
# Generate the plot | |
fig = plot_entropies( | |
patch_lengths, | |
scores, | |
decoded_output_for_plot, # Pass the decoded string for plot labels | |
threshold=patcher.threshold | |
) | |
# Generate data for HighlightedText | |
highlighted_data = create_highlighted_text_data( | |
tokenizer, patch_lengths, tokens, PATCH_COLORS | |
) | |
print("Processing and visualization data generation complete.") | |
# --- End Processing --- | |
return fig, highlighted_data, None # Return plot, highlighted text data, no error | |
except FileNotFoundError as e: | |
print(f"Error: {e}") | |
return None, None, f"Error: {str(e)}" # Return None for plot/text, error message | |
except Exception as e: | |
print(f"An unexpected error occurred: {e}") | |
import traceback | |
traceback.print_exc() | |
return None, None, f"An unexpected error occurred: {e}" # Return None for plot/text, error message | |
# --- Gradio Interface --- | |
# Create the color map for HighlightedText dynamically | |
# Generate enough patch labels and map them to the cycled colors | |
MAX_EXPECTED_PATCHES = 50 # Estimate a reasonable maximum | |
color_map = { | |
f"Patch {i+1}": color | |
for i, color in zip(range(MAX_EXPECTED_PATCHES), itertools.cycle(PATCH_COLORS)) | |
} | |
# Add a color for the potential 'Remainder' label from create_highlighted_text_data | |
color_map["Remainder"] = "#808080" # Grey for any leftovers | |
with gr.Blocks() as iface: | |
gr.Markdown("# ByteLatent Entropy Visualizer") # Title | |
gr.Markdown( | |
"Process any prompt (limited to 512 bytes) with the 100M entropy patcher model " | |
"and visualize the token entropies plot and color-coded patches below.<br><br>" # Updated description | |
"NOTE: this implementation differs slightly by excluding local attention so we limit " | |
"the characters limit to 512 to avoid any deviation.", | |
line_breaks=True | |
) | |
with gr.Column(): | |
prompt_input = gr.Textbox( | |
label="Input Prompt", | |
value="Daenerys Targaryen is in Game of Thrones, a fantasy epic by George R.R. Martin.", | |
placeholder="Enter text here...", | |
max_length=512, | |
lines=3 | |
) | |
submit_button = gr.Button("Generate Visualization") # Update button text | |
# Output for error messages or status | |
status_output = gr.Textbox(label="Status", interactive=False) | |
# Output component for the color-coded text | |
highlighted_output = gr.HighlightedText( | |
label="Patched Text Visualization", | |
color_map=color_map, | |
show_legend=False # Show the patch labels and colors | |
) | |
# Output component for the plot | |
plot_output = gr.Plot(label="Entropy vs. Token Index (with Patch Threshold)") | |
# Define the action for the button click | |
submit_button.click( | |
fn=process_text, | |
inputs=prompt_input, | |
outputs=[plot_output, highlighted_output, status_output] # Order matters! | |
) | |
# --- Launch the Gradio App --- | |
if __name__ == "__main__": | |
ensure_present(["blt-1b"]) # Ensure model is present before launching | |
iface.launch() | |