Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| import logging | |
| import math | |
| from functools import partial | |
| from pydantic import BaseModel, ConfigDict | |
| from torch import nn | |
| from torch.optim import AdamW, lr_scheduler | |
| logger = logging.getLogger() | |
| class OptimArgs(BaseModel): | |
| model_config = ConfigDict(extra="forbid") | |
| lr: float = 3e-4 | |
| weight_decay: float = 0.1 | |
| epsilon: float = 1e-8 | |
| beta1: float = 0.9 | |
| beta2: float = 0.95 | |
| clip: float = 1.0 | |
| scheduler: str = "cosine" | |
| warmup: int = 2000 | |
| lr_min_ratio: float = 0.1 | |
| cycle_length: float = 1.0 | |
| cosine_theta: float = 1.0 | |
| annealing_step: int = 1000 | |
| decay_fraction: float = 0.1 | |
| exp_factor: float = 0.5 | |
| def lr_linear(step: int, warmup: int, n_steps: int, min_ratio: float) -> float: | |
| if step < warmup: | |
| lr = float(step) / warmup | |
| elif step <= n_steps: | |
| s = float(step - warmup) / (n_steps - warmup) | |
| lr = s * min_ratio + (1 - s) | |
| else: | |
| lr = min_ratio | |
| return lr | |
| def lr_inv_sqrt(step: int, warmup: int, exp_factor: float, min_ratio: float) -> float: | |
| if step < warmup: | |
| lr = float(step) / warmup | |
| else: | |
| lr = max((warmup**exp_factor) / (step**exp_factor), min_ratio) | |
| return lr | |
| def lr_cosine( | |
| step: int, | |
| warmup: int, | |
| n_steps: int, | |
| cycle_length: float, | |
| theta: float, | |
| min_ratio: float, | |
| ) -> float: | |
| sign = ((step // (n_steps * cycle_length)) % 2) * -2 + 1 | |
| if step < warmup: | |
| lr = float(step) / warmup | |
| elif step <= n_steps: | |
| s = float(step - warmup) / (n_steps - warmup) | |
| lr = min_ratio + 0.5 * (1 - min_ratio) * ( | |
| sign * math.cos(math.pi * s**theta / cycle_length) + 1 | |
| ) | |
| else: | |
| lr = min_ratio | |
| return lr | |
| def lr_wsd( | |
| step: int, | |
| warmup: int, | |
| n_steps: int, | |
| decay_fraction: float, | |
| cycle_length: float, | |
| min_ratio: float, | |
| ) -> float: | |
| """ | |
| UNDERSTANDING WARMUP-STABLE-DECAY LEARNING RATES: A RIVER VALLEY LOSS LANDSCAPE PERSPECTIVE | |
| https://arxiv.org/pdf/2410.05192 | |
| """ | |
| cycle_num = step // int(n_steps * cycle_length) + 1 | |
| curr_n_steps = int(n_steps * cycle_length) * cycle_num | |
| decay_length = int(curr_n_steps * decay_fraction) | |
| if step < warmup: | |
| lr = float(step) / warmup | |
| elif step <= curr_n_steps - decay_length: | |
| lr = 1.0 | |
| elif step > curr_n_steps - decay_length and step <= curr_n_steps: | |
| # Linear interpolation gives similar results | |
| # slope = -(1.0 - min_ratio) / decay_length | |
| # intercept = min_ratio + ((1.0 - min_ratio) * curr_n_steps) / decay_length | |
| # lr = slope * step + intercept | |
| step = step - (curr_n_steps - decay_length) | |
| lr = 1 / ((step / curr_n_steps) * (1 / min_ratio) + (1 - step / curr_n_steps)) | |
| else: | |
| lr = min_ratio | |
| return lr | |
| def build_lr_fn(args: OptimArgs, n_steps: int): | |
| if args.scheduler == "constant": | |
| lr_fn = lambda x: 1.0 | |
| elif args.scheduler == "linear": | |
| lr_fn = partial( | |
| lr_linear, warmup=args.warmup, n_steps=n_steps, min_ratio=args.lr_min_ratio | |
| ) | |
| elif args.scheduler == "inv_sqrt": | |
| lr_fn = partial( | |
| lr_inv_sqrt, | |
| warmup=args.warmup, | |
| exp_factor=args.exp_factor, | |
| min_ratio=args.lr_min_ratio, | |
| ) | |
| elif args.scheduler == "cosine": | |
| lr_fn = partial( | |
| lr_cosine, | |
| warmup=args.warmup, | |
| n_steps=n_steps, | |
| cycle_length=args.cycle_length, | |
| theta=args.cosine_theta, | |
| min_ratio=args.lr_min_ratio, | |
| ) | |
| elif args.scheduler == "wsd": | |
| assert args.decay_fraction < args.cycle_length | |
| lr_fn = partial( | |
| lr_wsd, | |
| warmup=args.warmup, | |
| n_steps=n_steps, | |
| decay_fraction=args.decay_fraction, | |
| cycle_length=args.cycle_length, | |
| min_ratio=args.lr_min_ratio, | |
| ) | |
| else: | |
| raise NotImplementedError(f"Unknown scheduler: {args.scheduler}") | |
| return lr_fn | |
| def build_optimizer(model: nn.Module, args: OptimArgs, n_steps: int): | |
| logger.info("Starting build of optimizer...") | |
| optimizer = AdamW( | |
| model.parameters(), | |
| lr=args.lr, | |
| betas=(args.beta1, args.beta2), | |
| weight_decay=args.weight_decay, | |
| eps=args.epsilon, | |
| fused=True, # Faster optim.step but can throw errors | |
| ) | |
| # scheduler | |
| lr_fn = build_lr_fn(args, n_steps) | |
| scheduler = lr_scheduler.LambdaLR(optimizer, lr_fn) | |
| logger.info("Done with build of optimizer.") | |
| return optimizer, scheduler | |