import torch import numpy as np from PIL import Image import cv2 import os import sys import time import logging from pathlib import Path from typing import Tuple, Dict, List, Optional, Union import gradio as gr from huggingface_hub import hf_hub_download import warnings warnings.filterwarnings("ignore") from detectron2.config import get_cfg from detectron2.projects.deeplab import add_deeplab_config from detectron2.data import MetadataCatalog from detectron2.engine.defaults import DefaultPredictor from detectron2 import model_zoo from detectron2.utils.visualizer import Visualizer, ColorMode try: from oneformer import ( add_oneformer_config, add_common_config, add_swin_config, add_dinat_config, ) from demo.defaults import DefaultPredictor as OneFormerPredictor ONEFORMER_AVAILABLE = True except ImportError as e: print(f"OneFormer not available: {e}") ONEFORMER_AVAILABLE = False logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) DEVICE = "cuda" if torch.cuda.is_available() else "cpu" CPU_DEVICE = torch.device("cpu") torch.set_num_threads(4) FLOOR_CLASSES = { 'floor': [3, 4, 13], 'carpet': [28], 'mat': [78], } ONEFORMER_CONFIG = { "ADE20K": { "key": "ade20k", "swin_cfg": "configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml", "swin_model": "shi-labs/oneformer_ade20k_swin_large", "swin_file": "250_16_swin_l_oneformer_ade20k_160k.pth", "process_size": 640, "max_size": 2560 } } BLACKSPOT_MODEL_REPO = "sww35/neuronest-blackspot" BLACKSPOT_MODEL_FILE = "model_0004999.pth" DISPLAY_MAX_WIDTH = 1920 DISPLAY_MAX_HEIGHT = 1080 from universal_contrast_analyzer import UniversalContrastAnalyzer def resize_image_for_processing(image: np.ndarray, target_size: int = 640, max_size: int = 2560) -> Tuple[np.ndarray, float]: h, w = image.shape[:2] scale = target_size / min(h, w) if scale * max(h, w) > max_size: scale = max_size / max(h, w) new_w = int(w * scale) new_h = int(h * scale) new_w = (new_w // 32) * 32 new_h = (new_h // 32) * 32 resized = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4) return resized, scale def resize_mask_to_original(mask: np.ndarray, original_size: Tuple[int, int]) -> np.ndarray: return cv2.resize(mask.astype(np.uint8), (original_size[1], original_size[0]), interpolation=cv2.INTER_NEAREST) def prepare_display_image(image: np.ndarray, max_width: int = DISPLAY_MAX_WIDTH, max_height: int = DISPLAY_MAX_HEIGHT) -> np.ndarray: h, w = image.shape[:2] scale = 1.0 if w > max_width: scale = max_width / w if h * scale > max_height: scale = max_height / h if scale < 1.0: new_w = int(w * scale) new_h = int(h * scale) return cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LANCZOS4) return image class OneFormerManager: def __init__(self): self.predictor = None self.metadata = None self.initialized = False self.process_size = ONEFORMER_CONFIG["ADE20K"]["process_size"] self.max_size = ONEFORMER_CONFIG["ADE20K"]["max_size"] def initialize(self, backbone: str = "swin"): if not ONEFORMER_AVAILABLE: logger.error("OneFormer not available") return False try: cfg = get_cfg() add_deeplab_config(cfg) add_common_config(cfg) add_swin_config(cfg) add_oneformer_config(cfg) add_dinat_config(cfg) config = ONEFORMER_CONFIG["ADE20K"] cfg.merge_from_file(config["swin_cfg"]) cfg.MODEL.DEVICE = DEVICE model_path = hf_hub_download( repo_id=config["swin_model"], filename=config["swin_file"] ) cfg.MODEL.WEIGHTS = model_path cfg.freeze() self.predictor = OneFormerPredictor(cfg) self.metadata = MetadataCatalog.get( cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused" ) self.initialized = True logger.info("OneFormer initialized successfully") return True except Exception as e: logger.error(f"Failed to initialize OneFormer: {e}") return False def semantic_segmentation(self, image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: if not self.initialized: raise RuntimeError("OneFormer not initialized") original_size = (image.shape[0], image.shape[1]) image_processed, scale = resize_image_for_processing(image, self.process_size, self.max_size) logger.info(f"Processing image at {image_processed.shape}, scale: {scale}") predictions = self.predictor(image_processed, "semantic") seg_mask_processed = predictions["sem_seg"].argmax(dim=0).cpu().numpy() seg_mask_original = resize_mask_to_original(seg_mask_processed, original_size) visualizer = Visualizer( image[:, :, ::-1], metadata=self.metadata, instance_mode=ColorMode.IMAGE, scale=1.0 ) vis_output = visualizer.draw_sem_seg(seg_mask_original, alpha=0.6) vis_image = vis_output.get_image()[:, :, ::-1] vis_image_display = prepare_display_image(vis_image) return seg_mask_original, vis_image_display def extract_floor_areas(self, segmentation: np.ndarray) -> np.ndarray: floor_mask = np.zeros_like(segmentation, dtype=bool) for class_ids in FLOOR_CLASSES.values(): for class_id in class_ids: floor_mask |= (segmentation == class_id) return floor_mask class ImprovedBlackspotDetector: def __init__(self, model_path: str = None): self.model_path = model_path self.predictor = None self.floor_classes = [3, 4, 13, 28, 78] def download_model(self) -> str: try: model_path = hf_hub_download( repo_id=BLACKSPOT_MODEL_REPO, filename=BLACKSPOT_MODEL_FILE ) logger.info(f"Downloaded blackspot model to: {model_path}") return model_path except Exception as e: logger.warning(f"Could not download blackspot model from HF: {e}") local_path = f"./output_floor_blackspot/{BLACKSPOT_MODEL_FILE}" if os.path.exists(local_path): logger.info(f"Using local blackspot model: {local_path}") return local_path return None def initialize(self, threshold: float = 0.5) -> bool: try: if self.model_path is None: self.model_path = self.download_model() if self.model_path is None: logger.error("No blackspot model available") return False cfg = get_cfg() cfg.merge_from_file( model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") ) cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = threshold cfg.MODEL.WEIGHTS = self.model_path cfg.MODEL.DEVICE = DEVICE self.predictor = DefaultPredictor(cfg) logger.info("MaskRCNN blackspot detector initialized") return True except Exception as e: logger.error(f"Failed to initialize blackspot detector: {e}") return False def is_on_floor_surface( self, blackspot_mask: np.ndarray, segmentation: np.ndarray, floor_mask: np.ndarray, overlap_threshold: float = 0.8 ) -> bool: if np.sum(blackspot_mask) == 0: return False overlap = blackspot_mask & floor_mask overlap_ratio = np.sum(overlap) / np.sum(blackspot_mask) if overlap_ratio < overlap_threshold: return False blackspot_pixels = segmentation[blackspot_mask] if len(blackspot_pixels) == 0: return False unique_classes, counts = np.unique(blackspot_pixels, return_counts=True) floor_pixel_count = sum( counts[unique_classes == cls] for cls in self.floor_classes if cls in unique_classes ) floor_ratio = floor_pixel_count / len(blackspot_pixels) return floor_ratio > 0.7 def filter_non_floor_blackspots( self, blackspot_masks: List[np.ndarray], segmentation: np.ndarray, floor_mask: np.ndarray ) -> List[np.ndarray]: filtered_masks = [] for mask in blackspot_masks: if self.is_on_floor_surface(mask, segmentation, floor_mask): filtered_masks.append(mask) else: logger.debug(f"Filtered out non-floor blackspot with area {np.sum(mask)}") return filtered_masks def detect_blackspots( self, image: np.ndarray, segmentation: np.ndarray, floor_prior: Optional[np.ndarray] = None ) -> Dict: if self.predictor is None: raise RuntimeError("Blackspot detector not initialized") original_h, original_w = image.shape[:2] if floor_prior is not None and floor_prior.shape != (original_h, original_w): floor_prior = cv2.resize( floor_prior.astype(np.uint8), (original_w, original_h), interpolation=cv2.INTER_NEAREST ).astype(bool) if segmentation.shape != (original_h, original_w): segmentation = cv2.resize( segmentation.astype(np.uint8), (original_w, original_h), interpolation=cv2.INTER_NEAREST ) try: outputs = self.predictor(image) instances = outputs["instances"].to("cpu") except Exception as e: logger.error(f"Error in MaskRCNN prediction: {e}") return self._empty_results(image) if len(instances) == 0: return self._empty_results(image) pred_classes = instances.pred_classes.numpy() pred_masks = instances.pred_masks.numpy() scores = instances.scores.numpy() blackspot_indices = pred_classes == 1 blackspot_masks = pred_masks[blackspot_indices] if np.any(blackspot_indices) else [] blackspot_scores = scores[blackspot_indices] if np.any(blackspot_indices) else [] if floor_prior is not None: floor_mask = floor_prior else: floor_mask = np.zeros(segmentation.shape, dtype=bool) for cls in self.floor_classes: floor_mask |= (segmentation == cls) filtered_blackspot_masks = self.filter_non_floor_blackspots( blackspot_masks, segmentation, floor_mask ) combined_blackspot = np.zeros(image.shape[:2], dtype=bool) for mask in filtered_blackspot_masks: combined_blackspot |= mask visualization = self.create_visualization(image, floor_mask, combined_blackspot) visualization_display = prepare_display_image(visualization) floor_area = int(np.sum(floor_mask)) blackspot_area = int(np.sum(combined_blackspot)) coverage_percentage = (blackspot_area / floor_area * 100) if floor_area > 0 else 0 return { 'visualization': visualization_display, 'floor_mask': floor_mask, 'blackspot_mask': combined_blackspot, 'floor_area': floor_area, 'blackspot_area': blackspot_area, 'coverage_percentage': coverage_percentage, 'num_detections': len(filtered_blackspot_masks), 'avg_confidence': float(np.mean(blackspot_scores)) if len(blackspot_scores) > 0 else 0.0 } def create_visualization( self, image: np.ndarray, floor_mask: np.ndarray, blackspot_mask: np.ndarray ) -> np.ndarray: vis = image.copy() floor_overlay = vis.copy() floor_overlay[floor_mask] = [0, 255, 0] vis = cv2.addWeighted(vis, 0.7, floor_overlay, 0.3, 0) vis[blackspot_mask] = [255, 0, 0] blackspot_contours, _ = cv2.findContours( blackspot_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) cv2.drawContours(vis, blackspot_contours, -1, (255, 255, 0), 4) return vis def _empty_results(self, image: np.ndarray) -> Dict: empty_mask = np.zeros(image.shape[:2], dtype=bool) visualization_display = prepare_display_image(image) return { 'visualization': visualization_display, 'floor_mask': empty_mask, 'blackspot_mask': empty_mask, 'floor_area': 0, 'blackspot_area': 0, 'coverage_percentage': 0, 'num_detections': 0, 'avg_confidence': 0.0 } class NeuroNestApp: def __init__(self): self.oneformer = OneFormerManager() self.blackspot_detector = None self.contrast_analyzer = UniversalContrastAnalyzer(wcag_threshold=4.5) self.initialized = False def initialize(self): logger.info("Initializing NeuroNest application...") oneformer_success = self.oneformer.initialize() blackspot_success = False try: self.blackspot_detector = ImprovedBlackspotDetector() blackspot_success = self.blackspot_detector.initialize() except Exception as e: logger.warning(f"Could not initialize blackspot detector: {e}") self.initialized = oneformer_success return oneformer_success, blackspot_success def analyze_image( self, image_path: str, blackspot_threshold: float = 0.5, contrast_threshold: float = 4.5, enable_blackspot: bool = True, enable_contrast: bool = True ) -> Dict: if not self.initialized: return {"error": "Application not properly initialized"} try: image = cv2.imread(image_path, cv2.IMREAD_COLOR) if image is None: return {"error": "Could not load image"} image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) logger.info(f"Loaded image with shape: {image_rgb.shape}") results = { 'original_image': image_rgb, 'segmentation': None, 'blackspot': None, 'contrast': None, 'statistics': {} } logger.info("Running semantic segmentation...") seg_mask, seg_visualization = self.oneformer.semantic_segmentation(image_rgb) results['segmentation'] = { 'visualization': seg_visualization, 'mask': seg_mask } floor_prior = self.oneformer.extract_floor_areas(seg_mask) if enable_blackspot and self.blackspot_detector is not None: logger.info("Running blackspot detection...") try: blackspot_results = self.blackspot_detector.detect_blackspots( image_rgb, seg_mask, floor_prior ) results['blackspot'] = blackspot_results logger.info("Blackspot detection completed") except Exception as e: logger.error(f"Error in blackspot detection: {e}") results['blackspot'] = None if enable_contrast: logger.info("Running universal contrast analysis...") try: contrast_results = self.contrast_analyzer.analyze_contrast( image_rgb, seg_mask ) contrast_viz_display = prepare_display_image(contrast_results['visualization']) contrast_results['visualization'] = contrast_viz_display results['contrast'] = contrast_results logger.info("Contrast analysis completed") except Exception as e: logger.error(f"Error in contrast analysis: {e}") results['contrast'] = None stats = self._generate_statistics(results) results['statistics'] = stats logger.info("Image analysis completed successfully") return results except Exception as e: logger.error(f"Error in image analysis: {e}") import traceback traceback.print_exc() return {"error": f"Analysis failed: {str(e)}"} def _generate_statistics(self, results: Dict) -> Dict: stats = {} if results['segmentation']: unique_classes = np.unique(results['segmentation']['mask']) stats['segmentation'] = { 'num_classes': len(unique_classes), 'image_size': results['segmentation']['mask'].shape } if results['blackspot']: bs = results['blackspot'] stats['blackspot'] = { 'floor_area_pixels': bs['floor_area'], 'blackspot_area_pixels': bs['blackspot_area'], 'coverage_percentage': bs['coverage_percentage'], 'num_detections': bs['num_detections'], 'avg_confidence': bs['avg_confidence'] } if results['contrast']: cs = results['contrast']['statistics'] stats['contrast'] = { 'total_segments': cs.get('total_segments', 0), 'analyzed_pairs': cs.get('analyzed_pairs', 0), 'low_contrast_pairs': cs.get('low_contrast_pairs', 0), 'critical_issues': cs.get('critical_issues', 0), 'high_priority_issues': cs.get('high_priority_issues', 0), 'medium_priority_issues': cs.get('medium_priority_issues', 0), 'floor_object_issues': cs.get('floor_object_issues', 0) } return stats def create_gradio_interface(): app = NeuroNestApp() oneformer_ok, blackspot_ok = app.initialize() if not oneformer_ok: raise RuntimeError("Failed to initialize OneFormer") def analyze_wrapper( image_path, blackspot_threshold, contrast_threshold, enable_blackspot, enable_contrast ): if image_path is None: return None, None, None, "Please upload an image" results = app.analyze_image( image_path=image_path, blackspot_threshold=blackspot_threshold, contrast_threshold=contrast_threshold, enable_blackspot=enable_blackspot, enable_contrast=enable_contrast ) if "error" in results: return None, None, None, f"Error: {results['error']}" seg_output = results['segmentation']['visualization'] if results['segmentation'] else None blackspot_output = results['blackspot']['visualization'] if results['blackspot'] else None contrast_output = results['contrast']['visualization'] if results['contrast'] else None if results['contrast']: contrast_report = app.contrast_analyzer.generate_report(results['contrast']) else: contrast_report = "Contrast analysis not performed." if results['blackspot']: bs = results['blackspot'] blackspot_report = ( f"**Floor Area:** {bs['floor_area']:,} pixels \n" f"**Blackspot Area:** {bs['blackspot_area']:,} pixels \n" f"**Coverage:** {bs['coverage_percentage']:.2f}% \n" f"**Detections:** {bs['num_detections']} \n" f"**Average Confidence:** {bs['avg_confidence']:.2f}" ) else: blackspot_report = "Blackspot analysis not performed." report = generate_comprehensive_report(results, contrast_report, blackspot_report) return seg_output, blackspot_output, contrast_output, report def generate_comprehensive_report(results: Dict, contrast_report: str, blackspot_report: str) -> str: report = ["# 🧠 NeuroNest Analysis Report\n"] report.append(f"*Generated: {time.strftime('%Y-%m-%d %H:%M:%S')}*\n") if results['segmentation']: stats = results['statistics'].get('segmentation', {}) report.append("## šŸŽÆ Object Segmentation") report.append(f"- **Classes detected:** {stats.get('num_classes', 'N/A')}") report.append(f"- **Resolution:** {stats.get('image_size', 'N/A')}") report.append("") report.append("## ⚫ Blackspot Analysis") report.append(blackspot_report) report.append("") report.append("## šŸŽØ Universal Contrast Analysis") report.append(contrast_report) report.append("") report.append("## šŸ“‹ Recommendations for Alzheimer's Care") has_issues = False if results['blackspot'] and results['statistics']['blackspot']['coverage_percentage'] > 0: has_issues = True report.append("\n### Blackspot Mitigation:") report.append("- Replace dark flooring materials with lighter alternatives") report.append("- Install additional lighting in affected areas") report.append("- Use light-colored rugs or runners to cover dark spots") report.append("- Add contrasting tape or markers around blackspot perimeters") if results['contrast'] and results['statistics']['contrast']['low_contrast_pairs'] > 0: has_issues = True report.append("\n### Contrast Improvements:") contrast_issues = results['contrast']['issues'] critical_issues = [i for i in contrast_issues if i['severity'] == 'critical'] high_issues = [i for i in contrast_issues if i['severity'] == 'high'] if critical_issues: report.append("\n**CRITICAL - Immediate attention required:**") for issue in critical_issues[:3]: cat1, cat2 = issue['categories'] report.append(f"- {cat1.title()} ↔ {cat2.title()}: Increase contrast to 7:1 minimum") if high_issues: report.append("\n**HIGH PRIORITY:**") for issue in high_issues[:3]: cat1, cat2 = issue['categories'] report.append(f"- {cat1.title()} ↔ {cat2.title()}: Increase contrast to 4.5:1 minimum") report.append("\n**General recommendations:**") report.append("- Paint furniture in colors that contrast with floors/walls") report.append("- Add colored tape or markers to furniture edges") report.append("- Install LED strip lighting under furniture edges") report.append("- Use contrasting placemats, cushions, or covers") if not has_issues: report.append("\nāœ… **Excellent!** This environment appears well-optimized for individuals with Alzheimer's.") report.append("No significant visual hazards detected.") return "\n".join(report) title = "🧠 NeuroNest: AI-Powered Environment Safety Analysis" description = """ **Advanced visual analysis for Alzheimer's and dementia care environments. Texas State CS && Interior Design Dept. - Abheek Pradhan, Dr. Nadim Adi, Dr. Greg Lakomski** This system provides: - **Object Segmentation**: Identifies all room elements (floors, walls, furniture) - **Floor-Only Blackspot Detection**: Locates dangerous dark areas on walking surfaces - **Universal Contrast Analysis**: Evaluates visibility between ALL adjacent objects *Following WCAG 2.1 guidelines for visual accessibility | Upload a Picture. Click 'Analyze Environment'.Then scroll down.* """ with gr.Blocks(css=""" .container { max-width: 100%; margin: auto; padding: 20px; } .image-output { margin: 20px 0; } .image-output img { width: 100%; height: auto; max-width: 1920px; margin: 0 auto; display: block; border: 1px solid #ddd; border-radius: 8px; } .controls-row { margin-bottom: 30px; background: #f5f5f5; padding: 20px; border-radius: 8px; } .main-button { height: 80px !important; font-size: 1.3em !important; font-weight: bold !important; } .report-box { max-width: 1200px; margin: 30px auto; padding: 30px; background: #f9f9f9; border-radius: 8px; } h2 { margin-top: 40px; margin-bottom: 20px; color: #333; } """, theme=gr.themes.Base()) as interface: with gr.Column(elem_classes="container"): gr.Markdown(f"# {title}") gr.Markdown(description) if not blackspot_ok: gr.Markdown(""" āš ļø **Note:** Blackspot detection model not available. To enable blackspot detection, upload the model to HuggingFace or ensure it's in the local directory. """) with gr.Row(elem_classes="controls-row"): with gr.Column(scale=1): enable_blackspot = gr.Checkbox( value=blackspot_ok, label="Enable Floor Blackspot Detection", interactive=blackspot_ok ) blackspot_threshold = gr.Slider( minimum=0.1, maximum=0.9, value=0.5, step=0.05, label="Blackspot Sensitivity", visible=blackspot_ok ) with gr.Column(scale=1): enable_contrast = gr.Checkbox( value=True, label="Enable Universal Contrast Analysis" ) contrast_threshold = gr.Slider( minimum=3.0, maximum=7.0, value=4.5, step=0.1, label="WCAG Contrast Threshold" ) with gr.Row(): with gr.Column(scale=2): image_input = gr.Image( label="šŸ“ø Upload Room Image", type="filepath", height=500 ) with gr.Column(scale=1): analyze_button = gr.Button( "šŸ” Analyze Environment", variant="primary", elem_classes="main-button" ) gr.Markdown("---") gr.Markdown("## šŸŽÆ Segmented Objects") seg_display = gr.Image( label=None, interactive=False, show_label=False, elem_classes="image-output" ) if blackspot_ok: gr.Markdown("## ⚫ Blackspot Detection") blackspot_display = gr.Image( label=None, interactive=False, show_label=False, elem_classes="image-output" ) else: blackspot_display = gr.Image(visible=False) gr.Markdown("## šŸŽØ Contrast Analysis") contrast_display = gr.Image( label=None, interactive=False, show_label=False, elem_classes="image-output" ) gr.Markdown("---") analysis_report = gr.Markdown( value="Upload an image and click 'Analyze Environment' to begin.", elem_classes="report-box" ) analyze_button.click( fn=analyze_wrapper, inputs=[ image_input, blackspot_threshold, contrast_threshold, enable_blackspot, enable_contrast ], outputs=[ seg_display, blackspot_display, contrast_display, analysis_report ] ) gr.Markdown(""" --- **NeuroNest** v2.0 - Enhanced with floor-only blackspot detection and universal contrast analysis *Creating safer environments for cognitive health through AI* """) return interface if __name__ == "__main__": print(f"šŸš€ Starting NeuroNest on {DEVICE}") print(f"OneFormer available: {ONEFORMER_AVAILABLE}") try: interface = create_gradio_interface() interface.queue(max_size=10).launch( server_name="0.0.0.0", server_port=7860, share=True ) except Exception as e: logger.error(f"Failed to launch application: {e}") raise