import torch import numpy as np from PIL import Image import cv2 import os import sys import time import logging from pathlib import Path from typing import Tuple, Dict, List, Optional, Union import gradio as gr from huggingface_hub import hf_hub_download import warnings warnings.filterwarnings("ignore") # Detectron2 imports from detectron2.config import get_cfg from detectron2.projects.deeplab import add_deeplab_config from detectron2.data import MetadataCatalog from detectron2.engine import DefaultPredictor as DetectronPredictor from detectron2 import model_zoo from detectron2.utils.visualizer import Visualizer, ColorMode # OneFormer imports try: from oneformer import ( add_oneformer_config, add_common_config, add_swin_config, add_dinat_config, ) from demo.defaults import DefaultPredictor as OneFormerPredictor ONEFORMER_AVAILABLE = True except ImportError as e: print(f"OneFormer not available: {e}") ONEFORMER_AVAILABLE = False # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) ######################################## # GLOBAL CONFIGURATIONS ######################################## # Device configuration DEVICE = "cuda" if torch.cuda.is_available() else "cpu" CPU_DEVICE = torch.device("cpu") torch.set_num_threads(4) # ADE20K class mappings for floor detection FLOOR_CLASSES = { 'floor': [3, 4, 13], # floor, wood floor, rug 'carpet': [28], # carpet 'mat': [78], # mat } # OneFormer configurations ONEFORMER_CONFIG = { "ADE20K": { "key": "ade20k", "swin_cfg": "configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml", "swin_model": "shi-labs/oneformer_ade20k_swin_large", "swin_file": "250_16_swin_l_oneformer_ade20k_160k.pth", "width": 640 } } # Blackspot model configuration for HF Spaces BLACKSPOT_MODEL_REPO = "sww35/neuronest-blackspot" # Update with your HF repo BLACKSPOT_MODEL_FILE = "model_0004999.pth" ######################################## # IMPORT UNIVERSAL CONTRAST ANALYZER ######################################## from utils.universal_contrast_analyzer import UniversalContrastAnalyzer ######################################## # ONEFORMER INTEGRATION ######################################## class OneFormerManager: """Manages OneFormer model loading and inference""" def __init__(self): self.predictor = None self.metadata = None self.initialized = False def initialize(self, backbone: str = "swin"): """Initialize OneFormer model""" if not ONEFORMER_AVAILABLE: logger.error("OneFormer not available") return False try: cfg = get_cfg() add_deeplab_config(cfg) add_common_config(cfg) add_swin_config(cfg) add_oneformer_config(cfg) add_dinat_config(cfg) config = ONEFORMER_CONFIG["ADE20K"] cfg.merge_from_file(config["swin_cfg"]) cfg.MODEL.DEVICE = DEVICE # Download model if not exists model_path = hf_hub_download( repo_id=config["swin_model"], filename=config["swin_file"] ) cfg.MODEL.WEIGHTS = model_path cfg.freeze() self.predictor = OneFormerPredictor(cfg) self.metadata = MetadataCatalog.get( cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused" ) self.initialized = True logger.info("OneFormer initialized successfully") return True except Exception as e: logger.error(f"Failed to initialize OneFormer: {e}") return False def semantic_segmentation(self, image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Perform semantic segmentation""" if not self.initialized: raise RuntimeError("OneFormer not initialized") # Resize image to expected width width = ONEFORMER_CONFIG["ADE20K"]["width"] h, w = image.shape[:2] if w != width: scale = width / w new_h = int(h * scale) image_resized = cv2.resize(image, (width, new_h)) else: image_resized = image # Run prediction predictions = self.predictor(image_resized, "semantic") seg_mask = predictions["sem_seg"].argmax(dim=0).cpu().numpy() # Create visualization visualizer = Visualizer( image_resized[:, :, ::-1], metadata=self.metadata, instance_mode=ColorMode.IMAGE ) vis_output = visualizer.draw_sem_seg(seg_mask, alpha=0.5) vis_image = vis_output.get_image()[:, :, ::-1] # BGR to RGB return seg_mask, vis_image def extract_floor_areas(self, segmentation: np.ndarray) -> np.ndarray: """Extract floor areas from segmentation""" floor_mask = np.zeros_like(segmentation, dtype=bool) for class_ids in FLOOR_CLASSES.values(): for class_id in class_ids: floor_mask |= (segmentation == class_id) return floor_mask ######################################## # IMPROVED BLACKSPOT DETECTION ######################################## class ImprovedBlackspotDetector: """Enhanced blackspot detector that only detects on floor surfaces""" def __init__(self, model_path: str = None): self.model_path = model_path self.predictor = None # Expanded floor-related classes in ADE20K self.floor_classes = [3, 4, 13, 28, 78] # floor, wood floor, rug, carpet, mat def download_model(self) -> str: """Download blackspot model from HuggingFace""" try: # Try to download from HF repo model_path = hf_hub_download( repo_id=BLACKSPOT_MODEL_REPO, filename=BLACKSPOT_MODEL_FILE ) logger.info(f"Downloaded blackspot model to: {model_path}") return model_path except Exception as e: logger.warning(f"Could not download blackspot model from HF: {e}") # Fallback to local path local_path = f"./output_floor_blackspot/{BLACKSPOT_MODEL_FILE}" if os.path.exists(local_path): logger.info(f"Using local blackspot model: {local_path}") return local_path return None def initialize(self, threshold: float = 0.5) -> bool: """Initialize MaskRCNN model""" try: # Get model path if self.model_path is None: self.model_path = self.download_model() if self.model_path is None: logger.error("No blackspot model available") return False cfg = get_cfg() cfg.merge_from_file( model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") ) cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 # [floors, blackspot] cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = threshold cfg.MODEL.WEIGHTS = self.model_path cfg.MODEL.DEVICE = DEVICE self.predictor = DetectronPredictor(cfg) logger.info("MaskRCNN blackspot detector initialized") return True except Exception as e: logger.error(f"Failed to initialize blackspot detector: {e}") return False def is_on_floor_surface( self, blackspot_mask: np.ndarray, segmentation: np.ndarray, floor_mask: np.ndarray, overlap_threshold: float = 0.8 ) -> bool: """Check if a blackspot is actually on a floor surface""" if np.sum(blackspot_mask) == 0: return False # Check overlap with floor mask overlap = blackspot_mask & floor_mask overlap_ratio = np.sum(overlap) / np.sum(blackspot_mask) if overlap_ratio < overlap_threshold: return False # Additional check: verify the underlying segmentation class blackspot_pixels = segmentation[blackspot_mask] if len(blackspot_pixels) == 0: return False unique_classes, counts = np.unique(blackspot_pixels, return_counts=True) floor_pixel_count = sum( counts[unique_classes == cls] for cls in self.floor_classes if cls in unique_classes ) floor_ratio = floor_pixel_count / len(blackspot_pixels) return floor_ratio > 0.7 # At least 70% on floor classes def filter_non_floor_blackspots( self, blackspot_masks: List[np.ndarray], segmentation: np.ndarray, floor_mask: np.ndarray ) -> List[np.ndarray]: """Filter out blackspots that are not on floor surfaces""" filtered_masks = [] for mask in blackspot_masks: if self.is_on_floor_surface(mask, segmentation, floor_mask): filtered_masks.append(mask) else: logger.debug(f"Filtered out non-floor blackspot with area {np.sum(mask)}") return filtered_masks def detect_blackspots( self, image: np.ndarray, segmentation: np.ndarray, floor_prior: Optional[np.ndarray] = None ) -> Dict: """Detect blackspots only on floor surfaces""" if self.predictor is None: raise RuntimeError("Blackspot detector not initialized") original_h, original_w = image.shape[:2] if floor_prior is not None and floor_prior.shape != (original_h, original_w): floor_prior = cv2.resize( floor_prior.astype(np.uint8), (original_w, original_h), interpolation=cv2.INTER_NEAREST ).astype(bool) if segmentation.shape != (original_h, original_w): segmentation = cv2.resize( segmentation.astype(np.uint8), (original_w, original_h), interpolation=cv2.INTER_NEAREST ) try: outputs = self.predictor(image) instances = outputs["instances"].to("cpu") except Exception as e: logger.error(f"Error in MaskRCNN prediction: {e}") return self._empty_results(image) if len(instances) == 0: return self._empty_results(image) pred_classes = instances.pred_classes.numpy() pred_masks = instances.pred_masks.numpy() scores = instances.scores.numpy() blackspot_indices = pred_classes == 1 blackspot_masks = pred_masks[blackspot_indices] if np.any(blackspot_indices) else [] blackspot_scores = scores[blackspot_indices] if np.any(blackspot_indices) else [] if floor_prior is not None: floor_mask = floor_prior else: floor_mask = np.zeros(segmentation.shape, dtype=bool) for cls in self.floor_classes: floor_mask |= (segmentation == cls) filtered_blackspot_masks = self.filter_non_floor_blackspots( blackspot_masks, segmentation, floor_mask ) combined_blackspot = np.zeros(image.shape[:2], dtype=bool) for mask in filtered_blackspot_masks: combined_blackspot |= mask visualization = self.create_visualization(image, floor_mask, combined_blackspot) floor_area = int(np.sum(floor_mask)) blackspot_area = int(np.sum(combined_blackspot)) coverage_percentage = (blackspot_area / floor_area * 100) if floor_area > 0 else 0 return { 'visualization': visualization, 'floor_mask': floor_mask, 'blackspot_mask': combined_blackspot, 'floor_area': floor_area, 'blackspot_area': blackspot_area, 'coverage_percentage': coverage_percentage, 'num_detections': len(filtered_blackspot_masks), 'avg_confidence': float(np.mean(blackspot_scores)) if len(blackspot_scores) > 0 else 0.0 } def create_visualization( self, image: np.ndarray, floor_mask: np.ndarray, blackspot_mask: np.ndarray ) -> np.ndarray: """Create clear visualization of blackspots on floors only""" vis = image.copy() floor_overlay = vis.copy() floor_overlay[floor_mask] = [0, 255, 0] vis = cv2.addWeighted(vis, 0.7, floor_overlay, 0.3, 0) vis[blackspot_mask] = [255, 0, 0] blackspot_contours, _ = cv2.findContours( blackspot_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) cv2.drawContours(vis, blackspot_contours, -1, (255, 255, 0), 2) return vis def _empty_results(self, image: np.ndarray) -> Dict: """Return empty results structure""" empty_mask = np.zeros(image.shape[:2], dtype=bool) return { 'visualization': image, 'floor_mask': empty_mask, 'blackspot_mask': empty_mask, 'floor_area': 0, 'blackspot_area': 0, 'coverage_percentage': 0, 'num_detections': 0, 'avg_confidence': 0.0 } ######################################## # MAIN APPLICATION CLASS ######################################## class NeuroNestApp: """Main application class integrating all components""" def __init__(self): self.oneformer = OneFormerManager() self.blackspot_detector = None self.contrast_analyzer = UniversalContrastAnalyzer(wcag_threshold=4.5) self.initialized = False def initialize(self): """Initialize all components""" logger.info("Initializing NeuroNest application...") oneformer_success = self.oneformer.initialize() # Initialize blackspot detector with HF model blackspot_success = False try: self.blackspot_detector = ImprovedBlackspotDetector() blackspot_success = self.blackspot_detector.initialize() except Exception as e: logger.warning(f"Could not initialize blackspot detector: {e}") self.initialized = oneformer_success return oneformer_success, blackspot_success def analyze_image( self, image_path: str, blackspot_threshold: float = 0.5, contrast_threshold: float = 4.5, enable_blackspot: bool = True, enable_contrast: bool = True ) -> Dict: """Perform complete image analysis""" if not self.initialized: return {"error": "Application not properly initialized"} try: image = cv2.imread(image_path) if image is None: return {"error": "Could not load image"} image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) logger.info(f"Loaded image with shape: {image_rgb.shape}") results = { 'original_image': image_rgb, 'segmentation': None, 'blackspot': None, 'contrast': None, 'statistics': {} } logger.info("Running semantic segmentation...") seg_mask, seg_visualization = self.oneformer.semantic_segmentation(image_rgb) results['segmentation'] = { 'visualization': seg_visualization, 'mask': seg_mask } floor_prior = self.oneformer.extract_floor_areas(seg_mask) if enable_blackspot and self.blackspot_detector is not None: logger.info("Running blackspot detection...") try: h_orig, w_orig = image_rgb.shape[:2] h_seg, w_seg = seg_mask.shape if (h_seg, w_seg) != (h_orig, w_orig): seg_mask_resized = cv2.resize( seg_mask.astype(np.uint8), (w_orig, h_orig), interpolation=cv2.INTER_NEAREST ) else: seg_mask_resized = seg_mask blackspot_results = self.blackspot_detector.detect_blackspots( image_rgb, seg_mask_resized, floor_prior ) results['blackspot'] = blackspot_results logger.info("Blackspot detection completed") except Exception as e: logger.error(f"Error in blackspot detection: {e}") results['blackspot'] = None if enable_contrast: logger.info("Running universal contrast analysis...") try: h_seg, w_seg = seg_mask.shape image_for_contrast = cv2.resize(image_rgb, (w_seg, h_seg)) contrast_results = self.contrast_analyzer.analyze_contrast( image_for_contrast, seg_mask ) results['contrast'] = contrast_results logger.info("Contrast analysis completed") except Exception as e: logger.error(f"Error in contrast analysis: {e}") results['contrast'] = None stats = self._generate_statistics(results) results['statistics'] = stats logger.info("Image analysis completed successfully") return results except Exception as e: logger.error(f"Error in image analysis: {e}") import traceback traceback.print_exc() return {"error": f"Analysis failed: {str(e)}"} def _generate_statistics(self, results: Dict) -> Dict: """Generate comprehensive statistics""" stats = {} if results['segmentation']: unique_classes = np.unique(results['segmentation']['mask']) stats['segmentation'] = { 'num_classes': len(unique_classes), 'image_size': results['segmentation']['mask'].shape } if results['blackspot']: bs = results['blackspot'] stats['blackspot'] = { 'floor_area_pixels': bs['floor_area'], 'blackspot_area_pixels': bs['blackspot_area'], 'coverage_percentage': bs['coverage_percentage'], 'num_detections': bs['num_detections'], 'avg_confidence': bs['avg_confidence'] } if results['contrast']: cs = results['contrast']['statistics'] stats['contrast'] = { 'total_segments': cs.get('total_segments', 0), 'analyzed_pairs': cs.get('analyzed_pairs', 0), 'low_contrast_pairs': cs.get('low_contrast_pairs', 0), 'critical_issues': cs.get('critical_issues', 0), 'high_priority_issues': cs.get('high_priority_issues', 0), 'medium_priority_issues': cs.get('medium_priority_issues', 0), 'floor_object_issues': cs.get('floor_object_issues', 0) } return stats ######################################## # GRADIO INTERFACE ######################################## def create_gradio_interface(): """Create the Gradio interface""" app = NeuroNestApp() oneformer_ok, blackspot_ok = app.initialize() if not oneformer_ok: raise RuntimeError("Failed to initialize OneFormer") def analyze_wrapper( image_path, blackspot_threshold, contrast_threshold, enable_blackspot, enable_contrast ): """Wrapper function for Gradio interface""" if image_path is None: return None, None, None, "Please upload an image" results = app.analyze_image( image_path=image_path, blackspot_threshold=blackspot_threshold, contrast_threshold=contrast_threshold, enable_blackspot=enable_blackspot, enable_contrast=enable_contrast ) if "error" in results: return None, None, None, f"Error: {results['error']}" seg_output = results['segmentation']['visualization'] if results['segmentation'] else None blackspot_output = results['blackspot']['visualization'] if results['blackspot'] else None contrast_output = results['contrast']['visualization'] if results['contrast'] else None if results['contrast']: contrast_report = app.contrast_analyzer.generate_report(results['contrast']) else: contrast_report = "Contrast analysis not performed." if results['blackspot']: bs = results['blackspot'] blackspot_report = ( f"**Floor Area:** {bs['floor_area']:,} pixels \n" f"**Blackspot Area:** {bs['blackspot_area']:,} pixels \n" f"**Coverage:** {bs['coverage_percentage']:.2f}% \n" f"**Detections:** {bs['num_detections']} \n" f"**Average Confidence:** {bs['avg_confidence']:.2f}" ) else: blackspot_report = "Blackspot analysis not performed." report = generate_comprehensive_report(results, contrast_report, blackspot_report) return seg_output, blackspot_output, contrast_output, report def generate_comprehensive_report(results: Dict, contrast_report: str, blackspot_report: str) -> str: """Generate comprehensive analysis report""" report = ["# 🧠 NeuroNest Analysis Report\n"] report.append(f"*Generated: {time.strftime('%Y-%m-%d %H:%M:%S')}*\n") if results['segmentation']: stats = results['statistics'].get('segmentation', {}) report.append("## šŸŽÆ Object Segmentation") report.append(f"- **Classes detected:** {stats.get('num_classes', 'N/A')}") report.append(f"- **Resolution:** {stats.get('image_size', 'N/A')}") report.append("") report.append("## ⚫ Blackspot Analysis") report.append(blackspot_report) report.append("") report.append("## šŸŽØ Universal Contrast Analysis") report.append(contrast_report) report.append("") report.append("## šŸ“‹ Recommendations for Alzheimer's Care") has_issues = False if results['blackspot'] and results['statistics']['blackspot']['coverage_percentage'] > 0: has_issues = True report.append("\n### Blackspot Mitigation:") report.append("- Replace dark flooring materials with lighter alternatives") report.append("- Install additional lighting in affected areas") report.append("- Use light-colored rugs or runners to cover dark spots") report.append("- Add contrasting tape or markers around blackspot perimeters") if results['contrast'] and results['statistics']['contrast']['low_contrast_pairs'] > 0: has_issues = True report.append("\n### Contrast Improvements:") # Get specific recommendations based on issue types contrast_issues = results['contrast']['issues'] critical_issues = [i for i in contrast_issues if i['severity'] == 'critical'] high_issues = [i for i in contrast_issues if i['severity'] == 'high'] if critical_issues: report.append("\n**CRITICAL - Immediate attention required:**") for issue in critical_issues[:3]: cat1, cat2 = issue['categories'] report.append(f"- {cat1.title()} ↔ {cat2.title()}: Increase contrast to 7:1 minimum") if high_issues: report.append("\n**HIGH PRIORITY:**") for issue in high_issues[:3]: cat1, cat2 = issue['categories'] report.append(f"- {cat1.title()} ↔ {cat2.title()}: Increase contrast to 4.5:1 minimum") report.append("\n**General recommendations:**") report.append("- Paint furniture in colors that contrast with floors/walls") report.append("- Add colored tape or markers to furniture edges") report.append("- Install LED strip lighting under furniture edges") report.append("- Use contrasting placemats, cushions, or covers") if not has_issues: report.append("\nāœ… **Excellent!** This environment appears well-optimized for individuals with Alzheimer's.") report.append("No significant visual hazards detected.") return "\n".join(report) title = "🧠 NeuroNest: AI-Powered Environment Safety Analysis" description = """ **Advanced visual analysis for Alzheimer's and dementia care environments** This system provides: - **Object Segmentation**: Identifies all room elements (floors, walls, furniture) - **Floor-Only Blackspot Detection**: Locates dangerous dark areas on walking surfaces - **Universal Contrast Analysis**: Evaluates visibility between ALL adjacent objects *Following WCAG 2.1 guidelines for visual accessibility* """ with gr.Blocks() as interface: gr.Markdown(f"# {title}") gr.Markdown(description) # Information about model availability if not blackspot_ok: gr.Markdown(""" āš ļø **Note:** Blackspot detection model not available. To enable blackspot detection, upload the model to HuggingFace or ensure it's in the local directory. """) # Top row: toggles and sliders with gr.Row(): enable_blackspot = gr.Checkbox( value=blackspot_ok, label="Enable Floor Blackspot Detection", interactive=blackspot_ok ) blackspot_threshold = gr.Slider( minimum=0.1, maximum=0.9, value=0.5, step=0.05, label="Blackspot Sensitivity", visible=blackspot_ok ) enable_contrast = gr.Checkbox( value=True, label="Enable Universal Contrast Analysis" ) contrast_threshold = gr.Slider( minimum=3.0, maximum=7.0, value=4.5, step=0.1, label="WCAG Contrast Threshold" ) # Next row: image upload and analyze button with gr.Row(): with gr.Column(): image_input = gr.Image( label="šŸ“ø Upload Room Image", type="filepath", height=300 ) with gr.Column(): analyze_button = gr.Button( "šŸ” Analyze Environment", variant="primary" ) # Next row: segmented, blackspot, and contrast images side by side with gr.Row(): seg_display = gr.Image( label="šŸŽÆ Segmented Objects", height=250, interactive=False ) blackspot_display = gr.Image( label="⚫ Blackspot Detection", height=250, interactive=False, visible=blackspot_ok ) contrast_display = gr.Image( label="šŸŽØ Contrast Analysis", height=250, interactive=False ) # Bottom: analysis report always visible analysis_report = gr.Markdown( value="Upload an image and click 'Analyze Environment' to begin." ) analyze_button.click( fn=analyze_wrapper, inputs=[ image_input, blackspot_threshold, contrast_threshold, enable_blackspot, enable_contrast ], outputs=[ seg_display, blackspot_display, contrast_display, analysis_report ] ) gr.Markdown(""" --- **NeuroNest** v2.0 - Enhanced with floor-only blackspot detection and universal contrast analysis *Creating safer environments for cognitive health through AI* """) return interface ######################################## # MAIN EXECUTION ######################################## if __name__ == "__main__": print(f"šŸš€ Starting NeuroNest on {DEVICE}") print(f"OneFormer available: {ONEFORMER_AVAILABLE}") try: interface = create_gradio_interface() interface.queue(max_size=10).launch( server_name="0.0.0.0", server_port=7860, share=False ) except Exception as e: logger.error(f"Failed to launch application: {e}") raise