#!/usr/bin/env python3 """ Minimal OneFormer Demo for HuggingFace Spaces """ import os os.environ['CUDA_VISIBLE_DEVICES'] = '' import gradio as gr import torch import numpy as np from PIL import Image # Force CPU device = torch.device("cpu") def process_image(image): """Simple image processing function""" if image is None: return None # For now, just return the image with a message # Replace this with actual OneFormer inference return image # Create simple interface iface = gr.Interface( fn=process_image, inputs=gr.Image(type="numpy"), outputs=gr.Image(type="numpy"), title="OneFormer Demo", description="OneFormer: Universal Image Segmentation (CPU Mode)", ) if __name__ == "__main__": print(f"PyTorch version: {torch.__version__}") print(f"Running on: CPU") iface.launch(server_name="0.0.0.0", server_port=7860)