updating gradio_test imports
Browse files- gradio_test.py +5 -51
gradio_test.py
CHANGED
@@ -208,7 +208,6 @@ class ImprovedBlackspotDetector:
|
|
208 |
# Check overlap with floor mask
|
209 |
overlap = blackspot_mask & floor_mask
|
210 |
overlap_ratio = np.sum(overlap) / np.sum(blackspot_mask)
|
211 |
-
|
212 |
if overlap_ratio < overlap_threshold:
|
213 |
return False
|
214 |
|
@@ -217,14 +216,12 @@ class ImprovedBlackspotDetector:
|
|
217 |
if len(blackspot_pixels) == 0:
|
218 |
return False
|
219 |
|
220 |
-
# Check if majority of pixels are floor-related classes
|
221 |
unique_classes, counts = np.unique(blackspot_pixels, return_counts=True)
|
222 |
floor_pixel_count = sum(
|
223 |
counts[unique_classes == cls] for cls in self.floor_classes if cls in unique_classes
|
224 |
)
|
225 |
floor_ratio = floor_pixel_count / len(blackspot_pixels)
|
226 |
-
|
227 |
-
return floor_ratio > 0.7 # At least 70% of blackspot should be on floor classes
|
228 |
|
229 |
def filter_non_floor_blackspots(
|
230 |
self,
|
@@ -251,10 +248,8 @@ class ImprovedBlackspotDetector:
|
|
251 |
if self.predictor is None:
|
252 |
raise RuntimeError("Blackspot detector not initialized")
|
253 |
|
254 |
-
# Get original image dimensions
|
255 |
original_h, original_w = image.shape[:2]
|
256 |
|
257 |
-
# Ensure all masks have same dimensions
|
258 |
if floor_prior is not None and floor_prior.shape != (original_h, original_w):
|
259 |
floor_prior = cv2.resize(
|
260 |
floor_prior.astype(np.uint8),
|
@@ -269,7 +264,6 @@ class ImprovedBlackspotDetector:
|
|
269 |
interpolation=cv2.INTER_NEAREST
|
270 |
)
|
271 |
|
272 |
-
# Run detection
|
273 |
try:
|
274 |
outputs = self.predictor(image)
|
275 |
instances = outputs["instances"].to("cpu")
|
@@ -280,17 +274,14 @@ class ImprovedBlackspotDetector:
|
|
280 |
if len(instances) == 0:
|
281 |
return self._empty_results(image)
|
282 |
|
283 |
-
# Process results
|
284 |
pred_classes = instances.pred_classes.numpy()
|
285 |
pred_masks = instances.pred_masks.numpy()
|
286 |
scores = instances.scores.numpy()
|
287 |
|
288 |
-
# Separate floor and blackspot masks
|
289 |
blackspot_indices = pred_classes == 1
|
290 |
blackspot_masks = pred_masks[blackspot_indices] if np.any(blackspot_indices) else []
|
291 |
blackspot_scores = scores[blackspot_indices] if np.any(blackspot_indices) else []
|
292 |
|
293 |
-
# Create or use floor mask
|
294 |
if floor_prior is not None:
|
295 |
floor_mask = floor_prior
|
296 |
else:
|
@@ -298,20 +289,16 @@ class ImprovedBlackspotDetector:
|
|
298 |
for cls in self.floor_classes:
|
299 |
floor_mask |= (segmentation == cls)
|
300 |
|
301 |
-
# Filter blackspots to only those on floor surfaces
|
302 |
filtered_blackspot_masks = self.filter_non_floor_blackspots(
|
303 |
blackspot_masks, segmentation, floor_mask
|
304 |
)
|
305 |
|
306 |
-
# Combine filtered masks
|
307 |
combined_blackspot = np.zeros(image.shape[:2], dtype=bool)
|
308 |
for mask in filtered_blackspot_masks:
|
309 |
combined_blackspot |= mask
|
310 |
|
311 |
-
# Create visualizations
|
312 |
visualization = self.create_visualization(image, floor_mask, combined_blackspot)
|
313 |
|
314 |
-
# Calculate statistics
|
315 |
floor_area = int(np.sum(floor_mask))
|
316 |
blackspot_area = int(np.sum(combined_blackspot))
|
317 |
coverage_percentage = (blackspot_area / floor_area * 100) if floor_area > 0 else 0
|
@@ -336,15 +323,12 @@ class ImprovedBlackspotDetector:
|
|
336 |
"""Create clear visualization of blackspots on floors only"""
|
337 |
vis = image.copy()
|
338 |
|
339 |
-
# Semi-transparent green overlay for floors
|
340 |
floor_overlay = vis.copy()
|
341 |
floor_overlay[floor_mask] = [0, 255, 0]
|
342 |
vis = cv2.addWeighted(vis, 0.7, floor_overlay, 0.3, 0)
|
343 |
|
344 |
-
# Bright red for blackspots
|
345 |
vis[blackspot_mask] = [255, 0, 0]
|
346 |
|
347 |
-
# Add contours for clarity
|
348 |
blackspot_contours, _ = cv2.findContours(
|
349 |
blackspot_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
350 |
)
|
@@ -383,10 +367,8 @@ class NeuroNestApp:
|
|
383 |
"""Initialize all components"""
|
384 |
logger.info("Initializing NeuroNest application...")
|
385 |
|
386 |
-
# Initialize OneFormer
|
387 |
oneformer_success = self.oneformer.initialize()
|
388 |
|
389 |
-
# Initialize blackspot detector if model exists
|
390 |
blackspot_success = False
|
391 |
if os.path.exists(blackspot_model_path):
|
392 |
self.blackspot_detector = ImprovedBlackspotDetector(blackspot_model_path)
|
@@ -411,7 +393,6 @@ class NeuroNestApp:
|
|
411 |
return {"error": "Application not properly initialized"}
|
412 |
|
413 |
try:
|
414 |
-
# Load and preprocess image
|
415 |
image = cv2.imread(image_path)
|
416 |
if image is None:
|
417 |
return {"error": "Could not load image"}
|
@@ -427,26 +408,20 @@ class NeuroNestApp:
|
|
427 |
'statistics': {}
|
428 |
}
|
429 |
|
430 |
-
# 1. Semantic Segmentation
|
431 |
logger.info("Running semantic segmentation...")
|
432 |
seg_mask, seg_visualization = self.oneformer.semantic_segmentation(image_rgb)
|
433 |
-
|
434 |
results['segmentation'] = {
|
435 |
'visualization': seg_visualization,
|
436 |
'mask': seg_mask
|
437 |
}
|
438 |
|
439 |
-
# Extract floor areas
|
440 |
floor_prior = self.oneformer.extract_floor_areas(seg_mask)
|
441 |
|
442 |
-
# 2. Blackspot Detection (improved to only detect on floors)
|
443 |
if enable_blackspot and self.blackspot_detector is not None:
|
444 |
logger.info("Running blackspot detection...")
|
445 |
try:
|
446 |
-
# Resize segmentation mask to match original image if needed
|
447 |
h_orig, w_orig = image_rgb.shape[:2]
|
448 |
h_seg, w_seg = seg_mask.shape
|
449 |
-
|
450 |
if (h_seg, w_seg) != (h_orig, w_orig):
|
451 |
seg_mask_resized = cv2.resize(
|
452 |
seg_mask.astype(np.uint8),
|
@@ -465,14 +440,11 @@ class NeuroNestApp:
|
|
465 |
logger.error(f"Error in blackspot detection: {e}")
|
466 |
results['blackspot'] = None
|
467 |
|
468 |
-
# 3. Universal Contrast Analysis
|
469 |
if enable_contrast:
|
470 |
logger.info("Running universal contrast analysis...")
|
471 |
try:
|
472 |
-
# Resize image to match segmentation size
|
473 |
h_seg, w_seg = seg_mask.shape
|
474 |
image_for_contrast = cv2.resize(image_rgb, (w_seg, h_seg))
|
475 |
-
|
476 |
contrast_results = self.contrast_analyzer.analyze_contrast(
|
477 |
image_for_contrast, seg_mask
|
478 |
)
|
@@ -482,7 +454,6 @@ class NeuroNestApp:
|
|
482 |
logger.error(f"Error in contrast analysis: {e}")
|
483 |
results['contrast'] = None
|
484 |
|
485 |
-
# 4. Generate combined statistics
|
486 |
stats = self._generate_statistics(results)
|
487 |
results['statistics'] = stats
|
488 |
|
@@ -499,7 +470,6 @@ class NeuroNestApp:
|
|
499 |
"""Generate comprehensive statistics"""
|
500 |
stats = {}
|
501 |
|
502 |
-
# Segmentation stats
|
503 |
if results['segmentation']:
|
504 |
unique_classes = np.unique(results['segmentation']['mask'])
|
505 |
stats['segmentation'] = {
|
@@ -507,7 +477,6 @@ class NeuroNestApp:
|
|
507 |
'image_size': results['segmentation']['mask'].shape
|
508 |
}
|
509 |
|
510 |
-
# Blackspot stats
|
511 |
if results['blackspot']:
|
512 |
bs = results['blackspot']
|
513 |
stats['blackspot'] = {
|
@@ -518,7 +487,6 @@ class NeuroNestApp:
|
|
518 |
'avg_confidence': bs['avg_confidence']
|
519 |
}
|
520 |
|
521 |
-
# Contrast stats
|
522 |
if results['contrast']:
|
523 |
cs = results['contrast']['statistics']
|
524 |
stats['contrast'] = {
|
@@ -540,7 +508,6 @@ class NeuroNestApp:
|
|
540 |
def create_gradio_interface():
|
541 |
"""Create the Gradio interface"""
|
542 |
|
543 |
-
# Initialize the application
|
544 |
app = NeuroNestApp()
|
545 |
oneformer_ok, blackspot_ok = app.initialize()
|
546 |
|
@@ -556,7 +523,7 @@ def create_gradio_interface():
|
|
556 |
):
|
557 |
"""Wrapper function for Gradio interface"""
|
558 |
if image_path is None:
|
559 |
-
return None, None, None,
|
560 |
|
561 |
results = app.analyze_image(
|
562 |
image_path=image_path,
|
@@ -567,20 +534,17 @@ def create_gradio_interface():
|
|
567 |
)
|
568 |
|
569 |
if "error" in results:
|
570 |
-
return None, None, None,
|
571 |
|
572 |
-
# Extract outputs
|
573 |
seg_output = results['segmentation']['visualization'] if results['segmentation'] else None
|
574 |
blackspot_output = results['blackspot']['visualization'] if results['blackspot'] else None
|
575 |
contrast_output = results['contrast']['visualization'] if results['contrast'] else None
|
576 |
|
577 |
-
# Generate universal contrast report
|
578 |
if results['contrast']:
|
579 |
contrast_report = app.contrast_analyzer.generate_report(results['contrast'])
|
580 |
else:
|
581 |
contrast_report = "Contrast analysis not performed."
|
582 |
|
583 |
-
# Generate blackspot analysis report
|
584 |
if results['blackspot']:
|
585 |
bs = results['blackspot']
|
586 |
blackspot_report = (
|
@@ -593,9 +557,7 @@ def create_gradio_interface():
|
|
593 |
else:
|
594 |
blackspot_report = "Blackspot analysis not performed."
|
595 |
|
596 |
-
# Generate full report
|
597 |
report = generate_comprehensive_report(results, contrast_report, blackspot_report)
|
598 |
-
|
599 |
return seg_output, blackspot_output, contrast_output, report
|
600 |
|
601 |
def generate_comprehensive_report(results: Dict, contrast_report: str, blackspot_report: str) -> str:
|
@@ -603,7 +565,6 @@ def create_gradio_interface():
|
|
603 |
report = ["# 🧠 NeuroNest Analysis Report\n"]
|
604 |
report.append(f"*Generated: {time.strftime('%Y-%m-%d %H:%M:%S')}*\n")
|
605 |
|
606 |
-
# Segmentation results
|
607 |
if results['segmentation']:
|
608 |
stats = results['statistics'].get('segmentation', {})
|
609 |
report.append("## 🎯 Object Segmentation")
|
@@ -611,17 +572,14 @@ def create_gradio_interface():
|
|
611 |
report.append(f"- **Resolution:** {stats.get('image_size', 'N/A')}")
|
612 |
report.append("")
|
613 |
|
614 |
-
# Blackspot results
|
615 |
report.append("## ⚫ Blackspot Analysis")
|
616 |
report.append(blackspot_report)
|
617 |
report.append("")
|
618 |
|
619 |
-
# Universal contrast analysis
|
620 |
report.append("## 🎨 Universal Contrast Analysis")
|
621 |
report.append(contrast_report)
|
622 |
report.append("")
|
623 |
|
624 |
-
# Recommendations
|
625 |
report.append("## 📋 Recommendations for Alzheimer's Care")
|
626 |
|
627 |
has_issues = False
|
@@ -648,7 +606,6 @@ def create_gradio_interface():
|
|
648 |
|
649 |
return "\n".join(report)
|
650 |
|
651 |
-
# Create the interface
|
652 |
title = "🧠 NeuroNest: AI-Powered Environment Safety Analysis"
|
653 |
description = """
|
654 |
**Advanced visual analysis for Alzheimer's and dementia care environments**
|
@@ -662,7 +619,6 @@ def create_gradio_interface():
|
|
662 |
"""
|
663 |
|
664 |
with gr.Blocks() as interface:
|
665 |
-
|
666 |
gr.Markdown(f"# {title}")
|
667 |
gr.Markdown(description)
|
668 |
|
@@ -695,13 +651,13 @@ def create_gradio_interface():
|
|
695 |
|
696 |
# Next row: image upload and analyze button
|
697 |
with gr.Row():
|
698 |
-
with gr.Column(
|
699 |
image_input = gr.Image(
|
700 |
label="📸 Upload Room Image",
|
701 |
type="filepath",
|
702 |
height=300
|
703 |
)
|
704 |
-
with gr.Column(
|
705 |
analyze_button = gr.Button(
|
706 |
"🔍 Analyze Environment",
|
707 |
variant="primary"
|
@@ -731,7 +687,6 @@ def create_gradio_interface():
|
|
731 |
value="Upload an image and click 'Analyze Environment' to begin."
|
732 |
)
|
733 |
|
734 |
-
# Connect the interface
|
735 |
analyze_button.click(
|
736 |
fn=analyze_wrapper,
|
737 |
inputs=[
|
@@ -749,7 +704,6 @@ def create_gradio_interface():
|
|
749 |
]
|
750 |
)
|
751 |
|
752 |
-
# Footer
|
753 |
gr.Markdown("""
|
754 |
---
|
755 |
**NeuroNest** v2.0 - Enhanced with floor-only blackspot detection and universal contrast analysis
|
|
|
208 |
# Check overlap with floor mask
|
209 |
overlap = blackspot_mask & floor_mask
|
210 |
overlap_ratio = np.sum(overlap) / np.sum(blackspot_mask)
|
|
|
211 |
if overlap_ratio < overlap_threshold:
|
212 |
return False
|
213 |
|
|
|
216 |
if len(blackspot_pixels) == 0:
|
217 |
return False
|
218 |
|
|
|
219 |
unique_classes, counts = np.unique(blackspot_pixels, return_counts=True)
|
220 |
floor_pixel_count = sum(
|
221 |
counts[unique_classes == cls] for cls in self.floor_classes if cls in unique_classes
|
222 |
)
|
223 |
floor_ratio = floor_pixel_count / len(blackspot_pixels)
|
224 |
+
return floor_ratio > 0.7 # At least 70% on floor classes
|
|
|
225 |
|
226 |
def filter_non_floor_blackspots(
|
227 |
self,
|
|
|
248 |
if self.predictor is None:
|
249 |
raise RuntimeError("Blackspot detector not initialized")
|
250 |
|
|
|
251 |
original_h, original_w = image.shape[:2]
|
252 |
|
|
|
253 |
if floor_prior is not None and floor_prior.shape != (original_h, original_w):
|
254 |
floor_prior = cv2.resize(
|
255 |
floor_prior.astype(np.uint8),
|
|
|
264 |
interpolation=cv2.INTER_NEAREST
|
265 |
)
|
266 |
|
|
|
267 |
try:
|
268 |
outputs = self.predictor(image)
|
269 |
instances = outputs["instances"].to("cpu")
|
|
|
274 |
if len(instances) == 0:
|
275 |
return self._empty_results(image)
|
276 |
|
|
|
277 |
pred_classes = instances.pred_classes.numpy()
|
278 |
pred_masks = instances.pred_masks.numpy()
|
279 |
scores = instances.scores.numpy()
|
280 |
|
|
|
281 |
blackspot_indices = pred_classes == 1
|
282 |
blackspot_masks = pred_masks[blackspot_indices] if np.any(blackspot_indices) else []
|
283 |
blackspot_scores = scores[blackspot_indices] if np.any(blackspot_indices) else []
|
284 |
|
|
|
285 |
if floor_prior is not None:
|
286 |
floor_mask = floor_prior
|
287 |
else:
|
|
|
289 |
for cls in self.floor_classes:
|
290 |
floor_mask |= (segmentation == cls)
|
291 |
|
|
|
292 |
filtered_blackspot_masks = self.filter_non_floor_blackspots(
|
293 |
blackspot_masks, segmentation, floor_mask
|
294 |
)
|
295 |
|
|
|
296 |
combined_blackspot = np.zeros(image.shape[:2], dtype=bool)
|
297 |
for mask in filtered_blackspot_masks:
|
298 |
combined_blackspot |= mask
|
299 |
|
|
|
300 |
visualization = self.create_visualization(image, floor_mask, combined_blackspot)
|
301 |
|
|
|
302 |
floor_area = int(np.sum(floor_mask))
|
303 |
blackspot_area = int(np.sum(combined_blackspot))
|
304 |
coverage_percentage = (blackspot_area / floor_area * 100) if floor_area > 0 else 0
|
|
|
323 |
"""Create clear visualization of blackspots on floors only"""
|
324 |
vis = image.copy()
|
325 |
|
|
|
326 |
floor_overlay = vis.copy()
|
327 |
floor_overlay[floor_mask] = [0, 255, 0]
|
328 |
vis = cv2.addWeighted(vis, 0.7, floor_overlay, 0.3, 0)
|
329 |
|
|
|
330 |
vis[blackspot_mask] = [255, 0, 0]
|
331 |
|
|
|
332 |
blackspot_contours, _ = cv2.findContours(
|
333 |
blackspot_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
334 |
)
|
|
|
367 |
"""Initialize all components"""
|
368 |
logger.info("Initializing NeuroNest application...")
|
369 |
|
|
|
370 |
oneformer_success = self.oneformer.initialize()
|
371 |
|
|
|
372 |
blackspot_success = False
|
373 |
if os.path.exists(blackspot_model_path):
|
374 |
self.blackspot_detector = ImprovedBlackspotDetector(blackspot_model_path)
|
|
|
393 |
return {"error": "Application not properly initialized"}
|
394 |
|
395 |
try:
|
|
|
396 |
image = cv2.imread(image_path)
|
397 |
if image is None:
|
398 |
return {"error": "Could not load image"}
|
|
|
408 |
'statistics': {}
|
409 |
}
|
410 |
|
|
|
411 |
logger.info("Running semantic segmentation...")
|
412 |
seg_mask, seg_visualization = self.oneformer.semantic_segmentation(image_rgb)
|
|
|
413 |
results['segmentation'] = {
|
414 |
'visualization': seg_visualization,
|
415 |
'mask': seg_mask
|
416 |
}
|
417 |
|
|
|
418 |
floor_prior = self.oneformer.extract_floor_areas(seg_mask)
|
419 |
|
|
|
420 |
if enable_blackspot and self.blackspot_detector is not None:
|
421 |
logger.info("Running blackspot detection...")
|
422 |
try:
|
|
|
423 |
h_orig, w_orig = image_rgb.shape[:2]
|
424 |
h_seg, w_seg = seg_mask.shape
|
|
|
425 |
if (h_seg, w_seg) != (h_orig, w_orig):
|
426 |
seg_mask_resized = cv2.resize(
|
427 |
seg_mask.astype(np.uint8),
|
|
|
440 |
logger.error(f"Error in blackspot detection: {e}")
|
441 |
results['blackspot'] = None
|
442 |
|
|
|
443 |
if enable_contrast:
|
444 |
logger.info("Running universal contrast analysis...")
|
445 |
try:
|
|
|
446 |
h_seg, w_seg = seg_mask.shape
|
447 |
image_for_contrast = cv2.resize(image_rgb, (w_seg, h_seg))
|
|
|
448 |
contrast_results = self.contrast_analyzer.analyze_contrast(
|
449 |
image_for_contrast, seg_mask
|
450 |
)
|
|
|
454 |
logger.error(f"Error in contrast analysis: {e}")
|
455 |
results['contrast'] = None
|
456 |
|
|
|
457 |
stats = self._generate_statistics(results)
|
458 |
results['statistics'] = stats
|
459 |
|
|
|
470 |
"""Generate comprehensive statistics"""
|
471 |
stats = {}
|
472 |
|
|
|
473 |
if results['segmentation']:
|
474 |
unique_classes = np.unique(results['segmentation']['mask'])
|
475 |
stats['segmentation'] = {
|
|
|
477 |
'image_size': results['segmentation']['mask'].shape
|
478 |
}
|
479 |
|
|
|
480 |
if results['blackspot']:
|
481 |
bs = results['blackspot']
|
482 |
stats['blackspot'] = {
|
|
|
487 |
'avg_confidence': bs['avg_confidence']
|
488 |
}
|
489 |
|
|
|
490 |
if results['contrast']:
|
491 |
cs = results['contrast']['statistics']
|
492 |
stats['contrast'] = {
|
|
|
508 |
def create_gradio_interface():
|
509 |
"""Create the Gradio interface"""
|
510 |
|
|
|
511 |
app = NeuroNestApp()
|
512 |
oneformer_ok, blackspot_ok = app.initialize()
|
513 |
|
|
|
523 |
):
|
524 |
"""Wrapper function for Gradio interface"""
|
525 |
if image_path is None:
|
526 |
+
return None, None, None, "Please upload an image"
|
527 |
|
528 |
results = app.analyze_image(
|
529 |
image_path=image_path,
|
|
|
534 |
)
|
535 |
|
536 |
if "error" in results:
|
537 |
+
return None, None, None, f"Error: {results['error']}"
|
538 |
|
|
|
539 |
seg_output = results['segmentation']['visualization'] if results['segmentation'] else None
|
540 |
blackspot_output = results['blackspot']['visualization'] if results['blackspot'] else None
|
541 |
contrast_output = results['contrast']['visualization'] if results['contrast'] else None
|
542 |
|
|
|
543 |
if results['contrast']:
|
544 |
contrast_report = app.contrast_analyzer.generate_report(results['contrast'])
|
545 |
else:
|
546 |
contrast_report = "Contrast analysis not performed."
|
547 |
|
|
|
548 |
if results['blackspot']:
|
549 |
bs = results['blackspot']
|
550 |
blackspot_report = (
|
|
|
557 |
else:
|
558 |
blackspot_report = "Blackspot analysis not performed."
|
559 |
|
|
|
560 |
report = generate_comprehensive_report(results, contrast_report, blackspot_report)
|
|
|
561 |
return seg_output, blackspot_output, contrast_output, report
|
562 |
|
563 |
def generate_comprehensive_report(results: Dict, contrast_report: str, blackspot_report: str) -> str:
|
|
|
565 |
report = ["# 🧠 NeuroNest Analysis Report\n"]
|
566 |
report.append(f"*Generated: {time.strftime('%Y-%m-%d %H:%M:%S')}*\n")
|
567 |
|
|
|
568 |
if results['segmentation']:
|
569 |
stats = results['statistics'].get('segmentation', {})
|
570 |
report.append("## 🎯 Object Segmentation")
|
|
|
572 |
report.append(f"- **Resolution:** {stats.get('image_size', 'N/A')}")
|
573 |
report.append("")
|
574 |
|
|
|
575 |
report.append("## ⚫ Blackspot Analysis")
|
576 |
report.append(blackspot_report)
|
577 |
report.append("")
|
578 |
|
|
|
579 |
report.append("## 🎨 Universal Contrast Analysis")
|
580 |
report.append(contrast_report)
|
581 |
report.append("")
|
582 |
|
|
|
583 |
report.append("## 📋 Recommendations for Alzheimer's Care")
|
584 |
|
585 |
has_issues = False
|
|
|
606 |
|
607 |
return "\n".join(report)
|
608 |
|
|
|
609 |
title = "🧠 NeuroNest: AI-Powered Environment Safety Analysis"
|
610 |
description = """
|
611 |
**Advanced visual analysis for Alzheimer's and dementia care environments**
|
|
|
619 |
"""
|
620 |
|
621 |
with gr.Blocks() as interface:
|
|
|
622 |
gr.Markdown(f"# {title}")
|
623 |
gr.Markdown(description)
|
624 |
|
|
|
651 |
|
652 |
# Next row: image upload and analyze button
|
653 |
with gr.Row():
|
654 |
+
with gr.Column():
|
655 |
image_input = gr.Image(
|
656 |
label="📸 Upload Room Image",
|
657 |
type="filepath",
|
658 |
height=300
|
659 |
)
|
660 |
+
with gr.Column():
|
661 |
analyze_button = gr.Button(
|
662 |
"🔍 Analyze Environment",
|
663 |
variant="primary"
|
|
|
687 |
value="Upload an image and click 'Analyze Environment' to begin."
|
688 |
)
|
689 |
|
|
|
690 |
analyze_button.click(
|
691 |
fn=analyze_wrapper,
|
692 |
inputs=[
|
|
|
704 |
]
|
705 |
)
|
706 |
|
|
|
707 |
gr.Markdown("""
|
708 |
---
|
709 |
**NeuroNest** v2.0 - Enhanced with floor-only blackspot detection and universal contrast analysis
|