lolout1's picture
Initial deployment to Hugging Face
6524e7a
# -------------------------------------------------------------------------
# MIT License
#
# Copyright (c) 2021 OpenAI
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# -------------------------------------------------------------------------
import torch
import torch.utils.checkpoint as checkpoint
from torch import nn
from collections import OrderedDict
from timm.models.layers import trunc_normal_
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.q_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.k_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.v_proj = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, q, k, v):
B, N, C = q.shape
assert k.shape == v.shape
B, M, C = k.shape
q = self.q_proj(q).reshape(B, N, self.num_heads, C // self.num_heads)
k = self.k_proj(k).reshape(B, M, self.num_heads, C // self.num_heads)
v = self.v_proj(v).reshape(B, M, self.num_heads, C // self.num_heads)
attn = torch.einsum('bnkc,bmkc->bknm', q, k) * self.scale
attn = attn.softmax(dim=-1)
x = torch.einsum('bknm,bmkc->bnkc', attn, v).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class TransformerDecoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dropout=0.1,
):
super().__init__()
self.self_attn = Attention(d_model, nhead, proj_drop=dropout)
self.cross_attn = Attention(d_model, nhead, proj_drop=dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
self.mlp = nn.Sequential(
nn.Linear(d_model, d_model * 4),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(d_model * 4, d_model)
)
def forward(self, x, mem):
q = k = v = self.norm1(x)
x = x + self.self_attn(q, k, v)
q = self.norm2(x)
x = x + self.cross_attn(q, mem, mem)
x = x + self.dropout(self.mlp(self.norm3(x)))
return x
class ContextDecoder(nn.Module):
def __init__(self,
transformer_width=256,
transformer_heads=4,
transformer_layers=6,
visual_dim=1024,
dropout=0.1,
**kwargs):
super().__init__()
self.memory_proj = nn.Sequential(
nn.LayerNorm(visual_dim),
nn.Linear(visual_dim, transformer_width),
nn.LayerNorm(transformer_width),
)
self.text_proj = nn.Sequential(
nn.LayerNorm(visual_dim),
nn.Linear(visual_dim, transformer_width),
)
self.decoder = nn.ModuleList([
TransformerDecoderLayer(transformer_width, transformer_heads, dropout) for _ in range(transformer_layers)
])
self.out_proj = nn.Sequential(
nn.LayerNorm(transformer_width),
nn.Linear(transformer_width, visual_dim)
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, text, visual):
B, N, C = visual.shape
visual = self.memory_proj(visual)
x = self.text_proj(text)
for layer in self.decoder:
x = layer(x, visual)
return self.out_proj(x)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = nn.LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)), ('gelu', QuickGELU()),
('c_proj', nn.Linear(d_model * 4, d_model))]))
self.ln_2 = nn.LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, key_padding_mask=key_padding_mask)[0]
def forward(self, x: torch.Tensor, key_padding_mask=None):
x = x + self.attention(self.ln_1(x), key_padding_mask=key_padding_mask)
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, use_checkpoint=False):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
proj_std = (self.width**-0.5) * ((2 * self.layers)**-0.5)
attn_std = self.width**-0.5
fc_std = (2 * self.width)**-0.5
for block in self.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
self.use_checkpoint = use_checkpoint
def forward(self, x: torch.Tensor):
for resblock in self.resblocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(resblock, x)
else:
x = resblock(x)
return x
class TextTransformer(nn.Module):
def __init__(
self,
context_length: int,
width: int,
layers: int,
vocab_size,
use_checkpoint=False,
):
super().__init__()
heads = width // 64
self.context_length = context_length
self.width = width
self.transformer = Transformer(
width=width,
layers=layers,
heads=heads,
attn_mask=self.build_attention_mask(),
use_checkpoint=use_checkpoint)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
self.ln_final = nn.LayerNorm(width)
self.token_embedding = nn.Embedding(vocab_size, width)
nn.init.normal_(self.token_embedding.weight, std=0.02)
# initialization
nn.init.normal_(self.positional_embedding, std=0.01)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float('-inf'))
mask.triu_(1) # zero out the lower diagonal
return mask
def forward(self, text):
x = self.token_embedding(text)
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
return x