File size: 19,151 Bytes
6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 6524e7a 4e58082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
"""
Universal Contrast Analyzer for detecting low contrast between ALL adjacent objects.
Optimized for Alzheimer's/dementia care environments.
"""
import numpy as np
import cv2
from typing import Dict, List, Tuple, Optional
import logging
from scipy.spatial import distance
from skimage.segmentation import find_boundaries
from sklearn.cluster import DBSCAN
import colorsys
logger = logging.getLogger(__name__)
class UniversalContrastAnalyzer:
"""
Analyzes contrast between ALL adjacent objects in a room.
Ensures proper visibility for elderly individuals with Alzheimer's or dementia.
"""
def __init__(self, wcag_threshold: float = 4.5):
self.wcag_threshold = wcag_threshold
# Comprehensive ADE20K semantic class mappings
self.semantic_classes = {
# Floors and ground surfaces
'floor': [3, 4, 13, 28, 78], # floor, wood floor, rug, carpet, mat
# Walls and vertical surfaces
'wall': [0, 1, 9, 21], # wall, building, brick, house
# Ceiling
'ceiling': [5, 16], # ceiling, sky (for rooms with skylights)
# Furniture - expanded list
'furniture': [
10, 19, 15, 7, 18, 23, 30, 33, 34, 36, 44, 45, 57, 63, 64, 65, 75,
# sofa, chair, table, bed, armchair, cabinet, desk, counter, stool,
# bench, nightstand, coffee table, ottoman, wardrobe, dresser, shelf,
# chest of drawers
],
# Doors and openings
'door': [25, 14, 79], # door, windowpane, screen door
# Windows
'window': [8, 14], # window, windowpane
# Stairs and steps
'stairs': [53, 59], # stairs, step
# Small objects that might be on floors/furniture
'objects': [
17, 20, 24, 37, 38, 39, 42, 62, 68, 71, 73, 80, 82, 84, 89, 90, 92, 93,
# curtain, book, picture, towel, clothes, pillow, box, bag, lamp, fan,
# cushion, basket, bottle, plate, clock, vase, tray, bowl
],
# Kitchen/bathroom fixtures
'fixtures': [
32, 46, 49, 50, 54, 66, 69, 70, 77, 94, 97, 98, 99, 117, 118, 119, 120,
# sink, toilet, bathtub, shower, dishwasher, oven, microwave,
# refrigerator, stove, washer, dryer, range hood, kitchen island
],
# Decorative elements
'decorative': [
6, 12, 56, 60, 61, 72, 83, 91, 96, 100, 102, 104, 106, 110, 112,
# painting, mirror, sculpture, chandelier, sconce, poster, tapestry
]
}
# Create reverse mapping for quick lookup
self.class_to_category = {}
for category, class_ids in self.semantic_classes.items():
for class_id in class_ids:
self.class_to_category[class_id] = category
def calculate_wcag_contrast(self, color1: np.ndarray, color2: np.ndarray) -> float:
"""Calculate WCAG 2.0 contrast ratio between two colors"""
def relative_luminance(rgb):
# Normalize to 0-1
rgb_norm = rgb / 255.0
# Apply gamma correction (linearize)
rgb_linear = np.where(
rgb_norm <= 0.03928,
rgb_norm / 12.92,
((rgb_norm + 0.055) / 1.055) ** 2.4
)
# Calculate luminance using ITU-R BT.709 coefficients
return np.dot(rgb_linear, [0.2126, 0.7152, 0.0722])
lum1 = relative_luminance(color1)
lum2 = relative_luminance(color2)
# Ensure lighter color is in numerator
lighter = max(lum1, lum2)
darker = min(lum1, lum2)
return (lighter + 0.05) / (darker + 0.05)
def calculate_hue_difference(self, color1: np.ndarray, color2: np.ndarray) -> float:
"""Calculate hue difference in degrees (0-180)"""
# Convert RGB to HSV
hsv1 = cv2.cvtColor(color1.reshape(1, 1, 3).astype(np.uint8), cv2.COLOR_RGB2HSV)[0, 0]
hsv2 = cv2.cvtColor(color2.reshape(1, 1, 3).astype(np.uint8), cv2.COLOR_RGB2HSV)[0, 0]
# Calculate circular hue difference (0-180 range in OpenCV)
hue_diff = abs(hsv1[0] - hsv2[0])
if hue_diff > 90:
hue_diff = 180 - hue_diff
return hue_diff
def calculate_saturation_difference(self, color1: np.ndarray, color2: np.ndarray) -> float:
"""Calculate saturation difference (0-255)"""
hsv1 = cv2.cvtColor(color1.reshape(1, 1, 3).astype(np.uint8), cv2.COLOR_RGB2HSV)[0, 0]
hsv2 = cv2.cvtColor(color2.reshape(1, 1, 3).astype(np.uint8), cv2.COLOR_RGB2HSV)[0, 0]
return abs(int(hsv1[1]) - int(hsv2[1]))
def extract_dominant_color(self, image: np.ndarray, mask: np.ndarray,
sample_size: int = 1000) -> np.ndarray:
"""Extract dominant color from masked region using robust statistics"""
if not np.any(mask):
return np.array([128, 128, 128]) # Default gray
# Get masked pixels
masked_pixels = image[mask]
if len(masked_pixels) == 0:
return np.array([128, 128, 128])
# Sample if too many pixels (for efficiency)
if len(masked_pixels) > sample_size:
indices = np.random.choice(len(masked_pixels), sample_size, replace=False)
masked_pixels = masked_pixels[indices]
# Use DBSCAN clustering to find dominant color cluster
if len(masked_pixels) > 50:
try:
clustering = DBSCAN(eps=30, min_samples=10).fit(masked_pixels)
labels = clustering.labels_
# Get the largest cluster
unique_labels, counts = np.unique(labels[labels >= 0], return_counts=True)
if len(unique_labels) > 0:
dominant_label = unique_labels[np.argmax(counts)]
dominant_colors = masked_pixels[labels == dominant_label]
return np.median(dominant_colors, axis=0).astype(int)
except:
pass
# Fallback to median
return np.median(masked_pixels, axis=0).astype(int)
def find_adjacent_segments(self, segmentation: np.ndarray) -> Dict[Tuple[int, int], np.ndarray]:
"""
Find all pairs of adjacent segments and their boundaries.
Returns dict mapping (seg1_id, seg2_id) to boundary mask.
"""
adjacencies = {}
# Find boundaries using 4-connectivity
boundaries = find_boundaries(segmentation, mode='inner')
# For each boundary pixel, check its neighbors
h, w = segmentation.shape
for y in range(1, h-1):
for x in range(1, w-1):
if boundaries[y, x]:
center_id = segmentation[y, x]
# Check 8-connected neighbors for more complete boundaries
neighbors = [
segmentation[y-1, x], # top
segmentation[y+1, x], # bottom
segmentation[y, x-1], # left
segmentation[y, x+1], # right
segmentation[y-1, x-1], # top-left
segmentation[y-1, x+1], # top-right
segmentation[y+1, x-1], # bottom-left
segmentation[y+1, x+1] # bottom-right
]
for neighbor_id in neighbors:
if neighbor_id != center_id and neighbor_id != 0: # Different segment, not background
# Create ordered pair (smaller id first)
pair = tuple(sorted([center_id, neighbor_id]))
# Add this boundary pixel to the adjacency map
if pair not in adjacencies:
adjacencies[pair] = np.zeros((h, w), dtype=bool)
adjacencies[pair][y, x] = True
# Filter out small boundaries (noise)
min_boundary_pixels = 20 # Reduced threshold for better detection
filtered_adjacencies = {}
for pair, boundary in adjacencies.items():
if np.sum(boundary) >= min_boundary_pixels:
filtered_adjacencies[pair] = boundary
return filtered_adjacencies
def is_contrast_sufficient(self, color1: np.ndarray, color2: np.ndarray,
category1: str, category2: str) -> Tuple[bool, str]:
"""
Determine if contrast is sufficient based on WCAG and perceptual guidelines.
Returns (is_sufficient, severity_if_not)
"""
wcag_ratio = self.calculate_wcag_contrast(color1, color2)
hue_diff = self.calculate_hue_difference(color1, color2)
sat_diff = self.calculate_saturation_difference(color1, color2)
# Critical relationships requiring highest contrast
critical_pairs = [
('floor', 'stairs'),
('floor', 'door'),
('stairs', 'wall')
]
# High priority relationships
high_priority_pairs = [
('floor', 'furniture'),
('wall', 'door'),
('wall', 'furniture'),
('floor', 'objects')
]
# Check relationship type
relationship = tuple(sorted([category1, category2]))
# Determine thresholds based on relationship
if relationship in critical_pairs:
# Critical: require 7:1 contrast ratio
if wcag_ratio < 7.0:
return False, 'critical'
if hue_diff < 30 and sat_diff < 50:
return False, 'critical'
elif relationship in high_priority_pairs:
# High priority: require 4.5:1 contrast ratio
if wcag_ratio < 4.5:
return False, 'high'
if wcag_ratio < 7.0 and hue_diff < 20 and sat_diff < 40:
return False, 'high'
else:
# Standard: require 3:1 contrast ratio minimum
if wcag_ratio < 3.0:
return False, 'medium'
if wcag_ratio < 4.5 and hue_diff < 15 and sat_diff < 30:
return False, 'medium'
return True, None
def analyze_contrast(self, image: np.ndarray, segmentation: np.ndarray) -> Dict:
"""
Perform comprehensive contrast analysis between ALL adjacent objects.
Args:
image: RGB image
segmentation: Segmentation mask with class IDs
Returns:
Dictionary containing analysis results and visualizations
"""
h, w = segmentation.shape
results = {
'issues': [],
'visualization': image.copy(),
'statistics': {
'total_segments': 0,
'analyzed_pairs': 0,
'low_contrast_pairs': 0,
'critical_issues': 0,
'high_priority_issues': 0,
'medium_priority_issues': 0,
'floor_object_issues': 0
}
}
# Get unique segments
unique_segments = np.unique(segmentation)
unique_segments = unique_segments[unique_segments != 0] # Remove background
results['statistics']['total_segments'] = len(unique_segments)
# Build segment information
segment_info = {}
logger.info(f"Building segment information for {len(unique_segments)} segments...")
for seg_id in unique_segments:
mask = segmentation == seg_id
area = np.sum(mask)
if area < 50: # Skip very small segments
continue
category = self.class_to_category.get(seg_id, 'unknown')
color = self.extract_dominant_color(image, mask)
segment_info[seg_id] = {
'category': category,
'mask': mask,
'color': color,
'area': area,
'class_id': seg_id
}
# Find all adjacent segment pairs
logger.info("Finding adjacent segments...")
adjacencies = self.find_adjacent_segments(segmentation)
logger.info(f"Found {len(adjacencies)} adjacent segment pairs")
# Analyze each adjacent pair
for (seg1_id, seg2_id), boundary in adjacencies.items():
if seg1_id not in segment_info or seg2_id not in segment_info:
continue
info1 = segment_info[seg1_id]
info2 = segment_info[seg2_id]
# Skip if both are unknown categories
if info1['category'] == 'unknown' and info2['category'] == 'unknown':
continue
results['statistics']['analyzed_pairs'] += 1
# Check contrast sufficiency
is_sufficient, severity = self.is_contrast_sufficient(
info1['color'], info2['color'],
info1['category'], info2['category']
)
if not is_sufficient:
results['statistics']['low_contrast_pairs'] += 1
# Calculate detailed metrics
wcag_ratio = self.calculate_wcag_contrast(info1['color'], info2['color'])
hue_diff = self.calculate_hue_difference(info1['color'], info2['color'])
sat_diff = self.calculate_saturation_difference(info1['color'], info2['color'])
# Check if it's a floor-object issue
is_floor_object = (
(info1['category'] == 'floor' and info2['category'] in ['furniture', 'objects']) or
(info2['category'] == 'floor' and info1['category'] in ['furniture', 'objects'])
)
if is_floor_object:
results['statistics']['floor_object_issues'] += 1
# Count by severity
if severity == 'critical':
results['statistics']['critical_issues'] += 1
elif severity == 'high':
results['statistics']['high_priority_issues'] += 1
elif severity == 'medium':
results['statistics']['medium_priority_issues'] += 1
# Record the issue
issue = {
'segment_ids': (seg1_id, seg2_id),
'categories': (info1['category'], info2['category']),
'colors': (info1['color'].tolist(), info2['color'].tolist()),
'wcag_ratio': float(wcag_ratio),
'hue_difference': float(hue_diff),
'saturation_difference': float(sat_diff),
'boundary_pixels': int(np.sum(boundary)),
'severity': severity,
'is_floor_object': is_floor_object,
'boundary_mask': boundary
}
results['issues'].append(issue)
# Visualize on the output image
self._visualize_issue(results['visualization'], boundary, severity)
# Sort issues by severity
severity_order = {'critical': 0, 'high': 1, 'medium': 2}
results['issues'].sort(key=lambda x: severity_order.get(x['severity'], 3))
logger.info(f"Contrast analysis complete: {results['statistics']['low_contrast_pairs']} issues found")
return results
def _visualize_issue(self, image: np.ndarray, boundary: np.ndarray, severity: str):
"""Add visual indicators for contrast issues"""
# Color coding by severity
colors = {
'critical': (255, 0, 0), # Red
'high': (255, 128, 0), # Orange
'medium': (255, 255, 0), # Yellow
}
color = colors.get(severity, (255, 255, 255))
# Dilate boundary for better visibility
kernel = np.ones((3, 3), np.uint8)
dilated = cv2.dilate(boundary.astype(np.uint8), kernel, iterations=2)
# Apply color overlay with transparency
overlay = image.copy()
overlay[dilated > 0] = color
cv2.addWeighted(overlay, 0.5, image, 0.5, 0, image)
return image
def generate_report(self, results: Dict) -> str:
"""Generate a detailed text report of contrast analysis"""
stats = results['statistics']
issues = results['issues']
report = []
report.append("=== Universal Contrast Analysis Report ===\n")
# Summary statistics
report.append(f"Total segments analyzed: {stats['total_segments']}")
report.append(f"Adjacent pairs analyzed: {stats['analyzed_pairs']}")
report.append(f"Low contrast pairs found: {stats['low_contrast_pairs']}")
report.append(f"- Critical issues: {stats['critical_issues']}")
report.append(f"- High priority issues: {stats['high_priority_issues']}")
report.append(f"- Medium priority issues: {stats['medium_priority_issues']}")
report.append(f"Floor-object contrast issues: {stats['floor_object_issues']}\n")
# Detailed issues
if issues:
report.append("=== Contrast Issues (sorted by severity) ===\n")
for i, issue in enumerate(issues[:10], 1): # Show top 10 issues
cat1, cat2 = issue['categories']
wcag = issue['wcag_ratio']
hue_diff = issue['hue_difference']
sat_diff = issue['saturation_difference']
severity = issue['severity'].upper()
report.append(f"{i}. [{severity}] {cat1} ↔ {cat2}")
report.append(f" - WCAG Contrast Ratio: {wcag:.2f}:1 (minimum: 4.5:1)")
report.append(f" - Hue Difference: {hue_diff:.1f}° (recommended: >30°)")
report.append(f" - Saturation Difference: {sat_diff} (recommended: >50)")
if issue['is_floor_object']:
report.append(" - ⚠️ Object on floor - requires high visibility!")
report.append(f" - Boundary size: {issue['boundary_pixels']} pixels")
report.append("")
else:
report.append("✅ No contrast issues detected!")
return "\n".join(report)
|