File size: 46,040 Bytes
6524e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
import torch
import numpy as np
from PIL import Image
import cv2
import os
import sys
import time
import logging
from pathlib import Path
from typing import Tuple, Dict, List, Optional, Union
import gradio as gr
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings("ignore")

# Detectron2 imports
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultPredictor as DetectronPredictor
from detectron2 import model_zoo
from detectron2.utils.visualizer import Visualizer, ColorMode

# OneFormer imports
try:
    from oneformer import (
        add_oneformer_config,
        add_common_config,
        add_swin_config,
        add_dinat_config,
    )
    from demo.defaults import DefaultPredictor as OneFormerPredictor
    ONEFORMER_AVAILABLE = True
except ImportError as e:
    print(f"OneFormer not available: {e}")
    ONEFORMER_AVAILABLE = False

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

########################################
# GLOBAL CONFIGURATIONS
########################################

# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
CPU_DEVICE = torch.device("cpu")
torch.set_num_threads(4)

# ADE20K class mappings for floor detection
FLOOR_CLASSES = {
    'floor': [3, 4, 13],  # floor, wood floor, rug
    'carpet': [28],       # carpet
    'mat': [78],          # mat
}

# OneFormer configurations
ONEFORMER_CONFIG = {
    "ADE20K": {
        "key": "ade20k",
        "swin_cfg": "configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml",
        "swin_model": "shi-labs/oneformer_ade20k_swin_large",
        "swin_file": "250_16_swin_l_oneformer_ade20k_160k.pth",
        "width": 640
    }
}

########################################
# IMPORT UNIVERSAL CONTRAST ANALYZER
########################################

from utils.universal_contrast_analyzer import UniversalContrastAnalyzer

# Keep old class for compatibility but deprecated
class RobustContrastAnalyzer:
    """Advanced contrast analyzer for Alzheimer's-friendly environments"""
    
    def __init__(self, wcag_threshold: float = 4.5):
        self.wcag_threshold = wcag_threshold
        
        # ADE20K class mappings for important objects
        self.semantic_classes = {
            'floor': [3, 4, 13, 28, 78],  # floor, wood floor, rug, carpet, mat
            'wall': [0, 1, 9],            # wall, building, brick
            'ceiling': [5],               # ceiling
            'furniture': [10, 19, 15, 7, 18, 23],  # sofa, chair, table, bed, armchair, cabinet
            'door': [25],                 # door
            'window': [8],                # window
            'stairs': [53],               # stairs
        }
        
        # Priority relationships for safety
        self.priority_relationships = {
            ('floor', 'furniture'): ('critical', 'Furniture must be clearly visible against floor'),
            ('floor', 'stairs'): ('critical', 'Stairs must have clear contrast with floor'),
            ('floor', 'door'): ('high', 'Door should be easily distinguishable from floor'),
            ('wall', 'furniture'): ('high', 'Furniture should stand out from walls'),
            ('wall', 'door'): ('high', 'Doors should be clearly visible on walls'),
            ('wall', 'window'): ('medium', 'Windows should have adequate contrast'),
            ('ceiling', 'wall'): ('low', 'Ceiling-wall contrast is less critical'),
        }
    
    def get_object_category(self, class_id: int) -> str:
        """Map segmentation class to object category"""
        for category, class_ids in self.semantic_classes.items():
            if class_id in class_ids:
                return category
        return 'other'
    
    def calculate_wcag_contrast(self, color1: np.ndarray, color2: np.ndarray) -> float:
        """Calculate WCAG contrast ratio"""
        def relative_luminance(rgb):
            rgb_norm = rgb / 255.0
            rgb_linear = np.where(rgb_norm <= 0.03928, 
                                rgb_norm / 12.92, 
                                ((rgb_norm + 0.055) / 1.055) ** 2.4)
            return np.dot(rgb_linear, [0.2126, 0.7152, 0.0722])
        
        lum1 = relative_luminance(color1)
        lum2 = relative_luminance(color2)
        
        lighter = max(lum1, lum2)
        darker = min(lum1, lum2)
        
        return (lighter + 0.05) / (darker + 0.05)
    
    def extract_dominant_color(self, image: np.ndarray, mask: np.ndarray) -> np.ndarray:
        """Extract dominant color from masked region"""
        if not np.any(mask):
            return np.array([128, 128, 128])
        
        masked_pixels = image[mask]
        if len(masked_pixels) == 0:
            return np.array([128, 128, 128])
        
        # Use median for robustness against outliers
        return np.median(masked_pixels, axis=0).astype(int)
    
    def find_adjacent_segments(self, seg1_mask: np.ndarray, seg2_mask: np.ndarray, 
                             min_boundary_length: int = 30) -> np.ndarray:
        """Find clean boundaries between segments"""
        kernel = np.ones((3, 3), np.uint8)
        dilated1 = cv2.dilate(seg1_mask.astype(np.uint8), kernel, iterations=1)
        dilated2 = cv2.dilate(seg2_mask.astype(np.uint8), kernel, iterations=1)
        
        boundary = dilated1 & dilated2
        
        # Remove small disconnected components
        contours, _ = cv2.findContours(boundary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        clean_boundary = np.zeros_like(boundary)
        
        for contour in contours:
            if cv2.contourArea(contour) >= min_boundary_length:
                cv2.fillPoly(clean_boundary, [contour], 1)
        
        return clean_boundary.astype(bool)
    
    def analyze_contrast(self, image: np.ndarray, segmentation: np.ndarray) -> Dict:
        """Perform comprehensive contrast analysis"""
        h, w = segmentation.shape
        results = {
            'critical_issues': [],
            'high_issues': [],
            'medium_issues': [],
            'visualization': image.copy(),
            'statistics': {}
        }
        
        # Build segment information
        unique_segments = np.unique(segmentation)
        segment_info = {}
        
        for seg_id in unique_segments:
            if seg_id == 0:  # Skip background
                continue
                
            mask = segmentation == seg_id
            if np.sum(mask) < 100:  # Skip very small segments
                continue
                
            category = self.get_object_category(seg_id)
            if category == 'other':
                continue
                
            segment_info[seg_id] = {
                'category': category,
                'mask': mask,
                'color': self.extract_dominant_color(image, mask),
                'area': np.sum(mask)
            }
        
        # Analyze priority relationships
        issue_counts = {'critical': 0, 'high': 0, 'medium': 0}
        
        for seg_id1, info1 in segment_info.items():
            for seg_id2, info2 in segment_info.items():
                if seg_id1 >= seg_id2:
                    continue
                
                # Check if this is a priority relationship
                relationship = tuple(sorted([info1['category'], info2['category']]))
                if relationship not in self.priority_relationships:
                    continue
                
                priority, description = self.priority_relationships[relationship]
                
                # Check if segments are adjacent
                boundary = self.find_adjacent_segments(info1['mask'], info2['mask'])
                if not np.any(boundary):
                    continue
                
                # Calculate contrast
                wcag_contrast = self.calculate_wcag_contrast(info1['color'], info2['color'])
                
                # Determine if there's an issue
                if wcag_contrast < self.wcag_threshold:
                    issue = {
                        'categories': (info1['category'], info2['category']),
                        'contrast_ratio': wcag_contrast,
                        'boundary_area': np.sum(boundary),
                        'description': description,
                        'priority': priority
                    }
                    
                    # Color-code boundaries and store issues
                    if priority == 'critical':
                        results['critical_issues'].append(issue)
                        results['visualization'][boundary] = [255, 0, 0]  # Red
                        issue_counts['critical'] += 1
                    elif priority == 'high':
                        results['high_issues'].append(issue)
                        results['visualization'][boundary] = [255, 165, 0]  # Orange
                        issue_counts['high'] += 1
                    elif priority == 'medium':
                        results['medium_issues'].append(issue)
                        results['visualization'][boundary] = [255, 255, 0]  # Yellow
                        issue_counts['medium'] += 1
        
        # Calculate statistics
        results['statistics'] = {
            'total_segments': len(segment_info),
            'total_issues': sum(issue_counts.values()),
            'critical_count': issue_counts['critical'],
            'high_count': issue_counts['high'],
            'medium_count': issue_counts['medium'],
            'wcag_threshold': self.wcag_threshold
        }
        
        return results

########################################
# ONEFORMER INTEGRATION
########################################

class OneFormerManager:
    """Manages OneFormer model loading and inference"""
    
    def __init__(self):
        self.predictor = None
        self.metadata = None
        self.initialized = False
    
    def initialize(self, backbone: str = "swin"):
        """Initialize OneFormer model"""
        if not ONEFORMER_AVAILABLE:
            logger.error("OneFormer not available")
            return False
        
        try:
            cfg = get_cfg()
            add_deeplab_config(cfg)
            add_common_config(cfg)
            add_swin_config(cfg)
            add_oneformer_config(cfg)
            add_dinat_config(cfg)
            
            config = ONEFORMER_CONFIG["ADE20K"]
            cfg.merge_from_file(config["swin_cfg"])
            cfg.MODEL.DEVICE = DEVICE
            
            # Download model if not exists
            model_path = hf_hub_download(
                repo_id=config["swin_model"],
                filename=config["swin_file"]
            )
            cfg.MODEL.WEIGHTS = model_path
            cfg.freeze()
            
            self.predictor = OneFormerPredictor(cfg)
            self.metadata = MetadataCatalog.get(
                cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused"
            )
            self.initialized = True
            logger.info("OneFormer initialized successfully")
            return True
            
        except Exception as e:
            logger.error(f"Failed to initialize OneFormer: {e}")
            return False
    
    def semantic_segmentation(self, image: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
        """Perform semantic segmentation"""
        if not self.initialized:
            raise RuntimeError("OneFormer not initialized")
        
        # Resize image to expected width
        width = ONEFORMER_CONFIG["ADE20K"]["width"]
        h, w = image.shape[:2]
        if w != width:
            scale = width / w
            new_h = int(h * scale)
            image_resized = cv2.resize(image, (width, new_h))
        else:
            image_resized = image
        
        # Run prediction
        predictions = self.predictor(image_resized, "semantic")
        seg_mask = predictions["sem_seg"].argmax(dim=0).cpu().numpy()
        
        # Create visualization
        visualizer = Visualizer(
            image_resized[:, :, ::-1], 
            metadata=self.metadata, 
            instance_mode=ColorMode.IMAGE
        )
        vis_output = visualizer.draw_sem_seg(seg_mask, alpha=0.5)
        vis_image = vis_output.get_image()[:, :, ::-1]  # BGR to RGB
        
        return seg_mask, vis_image
    
    def extract_floor_areas(self, segmentation: np.ndarray) -> np.ndarray:
        """Extract floor areas from segmentation"""
        floor_mask = np.zeros_like(segmentation, dtype=bool)
        
        for class_ids in FLOOR_CLASSES.values():
            for class_id in class_ids:
                floor_mask |= (segmentation == class_id)
        
        return floor_mask


########################################
# ENHANCED BLACKSPOT DETECTION WITH CLEAR VISUALIZATION
########################################

class BlackspotDetector:
    """Manages blackspot detection with MaskRCNN - Enhanced Version"""
    
    def __init__(self, model_path: str):
        self.model_path = model_path
        self.predictor = None
    
    def initialize(self, threshold: float = 0.5) -> bool:
        """Initialize MaskRCNN model"""
        try:
            cfg = get_cfg()
            cfg.merge_from_file(
                model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
            )
            cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2  # [floors, blackspot]
            cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = threshold
            cfg.MODEL.WEIGHTS = self.model_path
            cfg.MODEL.DEVICE = DEVICE
            
            self.predictor = DetectronPredictor(cfg)
            logger.info("MaskRCNN blackspot detector initialized")
            return True
            
        except Exception as e:
            logger.error(f"Failed to initialize blackspot detector: {e}")
            return False
    
    def create_enhanced_visualizations(self, image: np.ndarray, floor_mask: np.ndarray, 
                                     blackspot_mask: np.ndarray) -> Dict:
        """Create multiple enhanced visualizations of blackspot detection"""
        
        # 1. Pure Segmentation View (like semantic segmentation output)
        segmentation_view = np.zeros((*image.shape[:2], 3), dtype=np.uint8)
        segmentation_view[floor_mask] = [34, 139, 34]      # Forest green for floor
        segmentation_view[blackspot_mask] = [255, 0, 0]    # Bright red for blackspots
        segmentation_view[~(floor_mask | blackspot_mask)] = [128, 128, 128]  # Gray for other areas
        
        # 2. High Contrast Overlay
        high_contrast_overlay = image.copy()
        # Make background slightly darker to emphasize blackspots
        high_contrast_overlay = cv2.convertScaleAbs(high_contrast_overlay, alpha=0.6, beta=0)
        # Add bright overlays
        high_contrast_overlay[floor_mask] = cv2.addWeighted(
            high_contrast_overlay[floor_mask], 0.7, 
            np.full_like(high_contrast_overlay[floor_mask], [0, 255, 0]), 0.3, 0
        )
        high_contrast_overlay[blackspot_mask] = [255, 0, 255]  # Magenta for maximum visibility
        
        # 3. Blackspot-only View (white blackspots on black background)
        blackspot_only = np.zeros((*image.shape[:2], 3), dtype=np.uint8)
        blackspot_only[blackspot_mask] = [255, 255, 255]  # White blackspots
        blackspot_only[floor_mask & ~blackspot_mask] = [64, 64, 64]  # Dark gray for floor areas
        
        # 4. Side-by-side comparison
        h, w = image.shape[:2]
        side_by_side = np.zeros((h, w * 2, 3), dtype=np.uint8)
        side_by_side[:, :w] = image
        side_by_side[:, w:] = segmentation_view
        
        # Add text labels
        cv2.putText(side_by_side, "Original", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
        cv2.putText(side_by_side, "Blackspot Detection", (w + 10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
        
        # 5. Annotated view with bounding boxes and labels
        annotated_view = image.copy()
        
        # Find blackspot contours for bounding boxes
        blackspot_contours, _ = cv2.findContours(
            blackspot_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
        )
        
        for i, contour in enumerate(blackspot_contours):
            if cv2.contourArea(contour) > 50:  # Filter small artifacts
                # Draw bounding box
                x, y, w, h = cv2.boundingRect(contour)
                cv2.rectangle(annotated_view, (x, y), (x + w, y + h), (255, 0, 0), 2)
                
                # Draw contour
                cv2.drawContours(annotated_view, [contour], -1, (255, 0, 255), 2)
                
                # Add label
                area = cv2.contourArea(contour)
                label = f"Blackspot {i+1}: {area:.0f}px"
                cv2.putText(annotated_view, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 2)
        
        return {
            'segmentation_view': segmentation_view,
            'high_contrast_overlay': high_contrast_overlay,
            'blackspot_only': blackspot_only,
            'side_by_side': side_by_side,
            'annotated_view': annotated_view
        }
    
    def detect_blackspots(self, image: np.ndarray, floor_prior: Optional[np.ndarray] = None) -> Dict:
        """Detect blackspots with enhanced visualizations"""
        if self.predictor is None:
            raise RuntimeError("Blackspot detector not initialized")
        
        # Get original image dimensions
        original_h, original_w = image.shape[:2]
        
        # Handle floor prior shape mismatch
        processed_image = image.copy()
        if floor_prior is not None:
            prior_h, prior_w = floor_prior.shape
            
            # Resize floor_prior to match original image if needed
            if (prior_h, prior_w) != (original_h, original_w):
                logger.info(f"Resizing floor prior from {(prior_h, prior_w)} to {(original_h, original_w)}")
                floor_prior_resized = cv2.resize(
                    floor_prior.astype(np.uint8), 
                    (original_w, original_h), 
                    interpolation=cv2.INTER_NEAREST
                ).astype(bool)
            else:
                floor_prior_resized = floor_prior
        else:
            floor_prior_resized = None
        
        # Run detection on the processed image
        try:
            outputs = self.predictor(processed_image)
            instances = outputs["instances"].to("cpu")
        except Exception as e:
            logger.error(f"Error in MaskRCNN prediction: {e}")
            # Return empty results
            empty_mask = np.zeros(image.shape[:2], dtype=bool)
            return {
                'visualization': image,
                'floor_mask': empty_mask,
                'blackspot_mask': empty_mask,
                'floor_area': 0,
                'blackspot_area': 0,
                'coverage_percentage': 0,
                'num_detections': 0,
                'avg_confidence': 0.0,
                'enhanced_views': self.create_enhanced_visualizations(image, empty_mask, empty_mask)
            }
        
        # Process results
        if len(instances) == 0:
            # No detections
            combined_floor = floor_prior_resized if floor_prior_resized is not None else np.zeros(image.shape[:2], dtype=bool)
            combined_blackspot = np.zeros(image.shape[:2], dtype=bool)
            blackspot_scores = []
        else:
            pred_classes = instances.pred_classes.numpy()
            pred_masks = instances.pred_masks.numpy()
            scores = instances.scores.numpy()
            
            # Separate floor and blackspot masks
            floor_indices = pred_classes == 0
            blackspot_indices = pred_classes == 1
            
            floor_masks = pred_masks[floor_indices] if np.any(floor_indices) else []
            blackspot_masks = pred_masks[blackspot_indices] if np.any(blackspot_indices) else []
            blackspot_scores = scores[blackspot_indices] if np.any(blackspot_indices) else []
            
            # Combine masks
            combined_floor = np.zeros(image.shape[:2], dtype=bool)
            combined_blackspot = np.zeros(image.shape[:2], dtype=bool)
            
            for mask in floor_masks:
                combined_floor |= mask
            
            for mask in blackspot_masks:
                combined_blackspot |= mask
            
            # Apply floor prior if available
            if floor_prior_resized is not None:
                # Combine OneFormer floor detection with MaskRCNN floor detection
                combined_floor |= floor_prior_resized
                # Keep only blackspots that are on floors
                combined_blackspot &= combined_floor
        
        # Create all enhanced visualizations
        enhanced_views = self.create_enhanced_visualizations(image, combined_floor, combined_blackspot)
        
        # Calculate statistics
        floor_area = int(np.sum(combined_floor))
        blackspot_area = int(np.sum(combined_blackspot))
        coverage_percentage = (blackspot_area / floor_area * 100) if floor_area > 0 else 0
        
        # Count individual blackspot instances
        blackspot_contours, _ = cv2.findContours(
            combined_blackspot.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
        )
        actual_detections = len([c for c in blackspot_contours if cv2.contourArea(c) > 50])
        
        return {
            'visualization': enhanced_views['high_contrast_overlay'],  # Main view
            'floor_mask': combined_floor,
            'blackspot_mask': combined_blackspot,
            'floor_area': floor_area,
            'blackspot_area': blackspot_area,
            'coverage_percentage': coverage_percentage,
            'num_detections': actual_detections,
            'avg_confidence': float(np.mean(blackspot_scores)) if len(blackspot_scores) > 0 else 0.0,
            'enhanced_views': enhanced_views  # All visualization options
        }
########################################
# FIXED MAIN APPLICATION CLASS
########################################

class NeuroNestApp:
    """Main application class integrating all components - FIXED VERSION"""
    
    def __init__(self):
        self.oneformer = OneFormerManager()
        self.blackspot_detector = None
        self.contrast_analyzer = UniversalContrastAnalyzer()
        self.initialized = False
    
    def initialize(self, blackspot_model_path: str = "./output_floor_blackspot/model_0004999.pth"):
        """Initialize all components"""
        logger.info("Initializing NeuroNest application...")
        
        # Initialize OneFormer
        oneformer_success = self.oneformer.initialize()
        
        # Initialize blackspot detector if model exists
        blackspot_success = False
        if os.path.exists(blackspot_model_path):
            self.blackspot_detector = BlackspotDetector(blackspot_model_path)
            blackspot_success = True
        else:
            logger.warning(f"Blackspot model not found at {blackspot_model_path}")
        
        self.initialized = oneformer_success
        return oneformer_success, blackspot_success
    
    def analyze_image(self, 
                     image_path: str,
                     blackspot_threshold: float = 0.5,
                     contrast_threshold: float = 4.5,
                     enable_blackspot: bool = True,
                     enable_contrast: bool = True) -> Dict:
        """Perform complete image analysis - FIXED VERSION"""
        
        if not self.initialized:
            return {"error": "Application not properly initialized"}
        
        try:
            # Load and preprocess image
            image = cv2.imread(image_path)
            if image is None:
                return {"error": "Could not load image"}
            
            image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            logger.info(f"Loaded image with shape: {image_rgb.shape}")
            
            results = {
                'original_image': image_rgb,
                'segmentation': None,
                'blackspot': None,
                'contrast': None,
                'statistics': {}
            }
            
            # 1. Semantic Segmentation (always performed)
            logger.info("Running semantic segmentation...")
            seg_mask, seg_visualization = self.oneformer.semantic_segmentation(image_rgb)
            logger.info(f"Segmentation mask shape: {seg_mask.shape}")
            
            results['segmentation'] = {
                'visualization': seg_visualization,
                'mask': seg_mask
            }
            
            # Extract floor areas for blackspot detection
            floor_prior = self.oneformer.extract_floor_areas(seg_mask)
            logger.info(f"Floor prior shape: {floor_prior.shape}, total floor pixels: {np.sum(floor_prior)}")
            
            # 2. Blackspot Detection (if enabled and model available)
            if enable_blackspot and self.blackspot_detector is not None:
                logger.info("Running blackspot detection...")
                try:
                    self.blackspot_detector.initialize(threshold=blackspot_threshold)
                    blackspot_results = self.blackspot_detector.detect_blackspots(image_rgb, floor_prior)
                    results['blackspot'] = blackspot_results
                    logger.info("Blackspot detection completed successfully")
                except Exception as e:
                    logger.error(f"Error in blackspot detection: {e}")
                    # Continue without blackspot results
                    results['blackspot'] = None
            
            # 3. Contrast Analysis (if enabled)
            if enable_contrast:
                logger.info("Running contrast analysis...")
                try:
                    # Use the resized image for contrast analysis to match segmentation
                    width = ONEFORMER_CONFIG["ADE20K"]["width"]
                    h, w = image_rgb.shape[:2]
                    if w != width:
                        scale = width / w
                        new_h = int(h * scale)
                        image_for_contrast = cv2.resize(image_rgb, (width, new_h))
                    else:
                        image_for_contrast = image_rgb
                    
                    contrast_results = self.contrast_analyzer.analyze_contrast(image_for_contrast, seg_mask)
                    results['contrast'] = contrast_results
                    logger.info("Contrast analysis completed successfully")
                except Exception as e:
                    logger.error(f"Error in contrast analysis: {e}")
                    # Continue without contrast results
                    results['contrast'] = None
            
            # 4. Generate combined statistics
            stats = self._generate_statistics(results)
            results['statistics'] = stats
            
            logger.info("Image analysis completed successfully")
            return results
            
        except Exception as e:
            logger.error(f"Error in image analysis: {e}")
            import traceback
            traceback.print_exc()
            return {"error": f"Analysis failed: {str(e)}"}
    
    def _generate_statistics(self, results: Dict) -> Dict:
        """Generate comprehensive statistics"""
        stats = {}
        
        # Segmentation stats
        if results['segmentation']:
            unique_classes = np.unique(results['segmentation']['mask'])
            stats['segmentation'] = {
                'num_classes': len(unique_classes),
                'image_size': results['segmentation']['mask'].shape
            }
        
        # Blackspot stats
        if results['blackspot']:
            bs = results['blackspot']
            stats['blackspot'] = {
                'floor_area_pixels': bs['floor_area'],
                'blackspot_area_pixels': bs['blackspot_area'],
                'coverage_percentage': bs['coverage_percentage'],
                'num_detections': bs['num_detections'],
                'avg_confidence': bs['avg_confidence']
            }
        
        # Contrast stats
        if results['contrast']:
            cs = results['contrast']['statistics']
            # Count issues by severity
            critical_count = sum(1 for issue in results['contrast'].get('issues', []) if issue['severity'] == 'critical')
            high_count = sum(1 for issue in results['contrast'].get('issues', []) if issue['severity'] == 'high')
            medium_count = sum(1 for issue in results['contrast'].get('issues', []) if issue['severity'] == 'medium')
            
            stats['contrast'] = {
                'total_issues': cs.get('low_contrast_pairs', 0),
                'critical_issues': critical_count,
                'high_priority_issues': high_count,
                'medium_priority_issues': medium_count,
                'segments_analyzed': cs.get('total_segments', 0),
                'floor_object_issues': cs.get('floor_object_issues', 0)
            }
        
        return stats
########################################
# GRADIO INTERFACE
########################################

########################################
# ENHANCED GRADIO INTERFACE WITH MULTIPLE BLACKSPOT VIEWS
########################################

def create_gradio_interface():
    """Create the enhanced Gradio interface with better blackspot visualization"""
    
    # Initialize the application
    app = NeuroNestApp()
    oneformer_ok, blackspot_ok = app.initialize()
    
    if not oneformer_ok:
        raise RuntimeError("Failed to initialize OneFormer")
    
    def analyze_wrapper(image_path, blackspot_threshold, contrast_threshold, 
                       enable_blackspot, enable_contrast, blackspot_view_type):
        """Enhanced wrapper function for Gradio interface"""
        if image_path is None:
            return None, None, None, None, None, "Please upload an image"
        
        results = app.analyze_image(
            image_path=image_path,
            blackspot_threshold=blackspot_threshold,
            contrast_threshold=contrast_threshold,
            enable_blackspot=enable_blackspot,
            enable_contrast=enable_contrast
        )
        
        if "error" in results:
            return None, None, None, None, None, f"Error: {results['error']}"
        
        # Extract outputs
        seg_output = results['segmentation']['visualization'] if results['segmentation'] else None
        
        # Enhanced blackspot output selection
        blackspot_output = None
        blackspot_segmentation = None
        if results['blackspot'] and 'enhanced_views' in results['blackspot']:
            views = results['blackspot']['enhanced_views']
            
            # Select view based on user choice
            if blackspot_view_type == "High Contrast":
                blackspot_output = views['high_contrast_overlay']
            elif blackspot_view_type == "Segmentation Only":
                blackspot_output = views['segmentation_view']
            elif blackspot_view_type == "Blackspots Only":
                blackspot_output = views['blackspot_only']
            elif blackspot_view_type == "Side by Side":
                blackspot_output = views['side_by_side']
            elif blackspot_view_type == "Annotated":
                blackspot_output = views['annotated_view']
            else:
                blackspot_output = views['high_contrast_overlay']
            
            # Always provide segmentation view for the dedicated tab
            blackspot_segmentation = views['segmentation_view']
        
        contrast_output = results['contrast']['visualization'] if results['contrast'] else None
        
        # Generate report
        report = generate_analysis_report(results)
        
        return seg_output, blackspot_output, blackspot_segmentation, contrast_output, report
    
    # Update the generate_analysis_report function
    def generate_analysis_report(results: Dict) -> str:
        """Generate enhanced analysis report text"""
        report = ["# NeuroNest Analysis Report\n"]
        
        # Segmentation results
        if results['segmentation']:
            stats = results['statistics'].get('segmentation', {})
            report.append(f"## 🎯 Semantic Segmentation")
            report.append(f"- **Objects detected:** {stats.get('num_classes', 'N/A')}")
            report.append(f"- **Image size:** {stats.get('image_size', 'N/A')}")
            report.append("")
        
        # Enhanced blackspot results
        if results['blackspot']:
            bs_stats = results['statistics'].get('blackspot', {})
            report.append(f"## ⚫ Blackspot Detection")
            report.append(f"- **Floor area:** {bs_stats.get('floor_area_pixels', 0):,} pixels")
            report.append(f"- **Blackspot area:** {bs_stats.get('blackspot_area_pixels', 0):,} pixels")
            report.append(f"- **Coverage:** {bs_stats.get('coverage_percentage', 0):.2f}% of floor")
            report.append(f"- **Individual blackspots:** {bs_stats.get('num_detections', 0)}")
            report.append(f"- **Average confidence:** {bs_stats.get('avg_confidence', 0):.2f}")
            
            # Risk assessment
            coverage = bs_stats.get('coverage_percentage', 0)
            if coverage > 5:
                report.append(f"- **⚠️ Risk Level:** HIGH - Significant blackspot coverage detected")
            elif coverage > 1:
                report.append(f"- **⚠️ Risk Level:** MEDIUM - Moderate blackspot coverage")
            elif coverage > 0:
                report.append(f"- **βœ“ Risk Level:** LOW - Minimal blackspot coverage")
            else:
                report.append(f"- **βœ“ Risk Level:** NONE - No blackspots detected")
            report.append("")
        
        # Contrast analysis results (updated for universal analyzer)
        if results['contrast']:
            contrast_stats = results['statistics'].get('contrast', {})
            report.append(f"## 🎨 Universal Contrast Analysis")
            report.append(f"- **Adjacent pairs analyzed:** {results['contrast']['statistics'].get('analyzed_pairs', 0)}")
            report.append(f"- **Total contrast issues:** {contrast_stats.get('total_issues', 0)}")
            report.append(f"- **πŸ”΄ Critical:** {contrast_stats.get('critical_issues', 0)}")
            report.append(f"- **🟠 High priority:** {contrast_stats.get('high_priority_issues', 0)}")
            report.append(f"- **🟑 Medium priority:** {contrast_stats.get('medium_priority_issues', 0)}")
            report.append(f"- **⚠️ Floor-object issues:** {contrast_stats.get('floor_object_issues', 0)}")
            report.append("")
            
            # Add detailed issues
            issues = results['contrast'].get('issues', [])
            if issues:
                # Group by severity
                critical_issues = [i for i in issues if i['severity'] == 'critical']
                high_issues = [i for i in issues if i['severity'] == 'high']
                
                if critical_issues:
                    report.append("### πŸ”΄ Critical Issues (Immediate Attention Required)")
                    for issue in critical_issues[:5]:  # Show top 5
                        cats = f"{issue['categories'][0]} ↔ {issue['categories'][1]}"
                        ratio = issue['wcag_ratio']
                        report.append(f"- **{cats}**: {ratio:.1f}:1 contrast ratio")
                        if issue['is_floor_object']:
                            report.append(f"  _⚠️ Object on floor - high visibility required!_")
                    report.append("")
                
                if high_issues:
                    report.append("### 🟠 High Priority Issues")
                    for issue in high_issues[:3]:  # Show top 3
                        cats = f"{issue['categories'][0]} ↔ {issue['categories'][1]}"
                        ratio = issue['wcag_ratio']
                        report.append(f"- **{cats}**: {ratio:.1f}:1 contrast ratio")
                    report.append("")
        
        # Enhanced recommendations
        report.append("## πŸ“‹ Recommendations")
        
        # Blackspot-specific recommendations
        if results['blackspot']:
            coverage = results['statistics'].get('blackspot', {}).get('coverage_percentage', 0)
            if coverage > 0:
                report.append("### Blackspot Mitigation")
                report.append("- Remove or replace dark-colored floor materials in detected areas")
                report.append("- Improve lighting in blackspot areas")
                report.append("- Consider using light-colored rugs or mats to cover blackspots")
                report.append("- Add visual cues like contrasting tape around problem areas")
                report.append("")
        
        # Contrast-specific recommendations
        contrast_issues = results['statistics'].get('contrast', {}).get('total_issues', 0)
        if contrast_issues > 0:
            report.append("### Contrast Improvements")
            report.append("- Increase lighting in low-contrast areas")
            report.append("- Use contrasting colors for furniture and floors")
            report.append("- Add visual markers for important boundaries")
            report.append("- Consider color therapy guidelines for dementia")
            report.append("")
        
        if coverage == 0 and contrast_issues == 0:
            report.append("βœ… **Environment Assessment: EXCELLENT**")
            report.append("No significant safety issues detected. This environment appears well-suited for individuals with Alzheimer's.")
        
        return "\n".join(report)
    
    # Create the interface with enhanced controls
    title = "🧠 NeuroNest: Advanced Environment Analysis for Alzheimer's Care"
    description = """
    **Comprehensive analysis system for creating Alzheimer's-friendly environments**
    
    This application integrates:
    - **Semantic Segmentation**: Identifies rooms, furniture, and objects
    - **Enhanced Blackspot Detection**: Locates and visualizes dangerous black areas on floors
    - **Contrast Analysis**: Evaluates color contrast for visual accessibility
    """
    
    with gr.Blocks(
        title=title,
        theme=gr.themes.Soft(primary_hue="orange", secondary_hue="blue"),
        css="""
        .main-header { text-align: center; margin-bottom: 2rem; }
        .analysis-section { border: 2px solid #f0f0f0; border-radius: 10px; padding: 1rem; margin: 1rem 0; }
        .critical-text { color: #ff0000; font-weight: bold; }
        .high-text { color: #ff8800; font-weight: bold; }
        .medium-text { color: #ffaa00; font-weight: bold; }
        """
    ) as interface:
        
        gr.Markdown(f"# {title}")
        gr.Markdown(description)
        
        with gr.Row():
            # Input Column
            with gr.Column(scale=1):
                # Image upload
                image_input = gr.Image(
                    label="πŸ“Έ Upload Room Image",
                    type="filepath",
                    height=300
                )
                
                # Analysis settings
                with gr.Accordion("πŸ”§ Analysis Settings", open=True):
                    enable_blackspot = gr.Checkbox(
                        value=blackspot_ok,
                        label="Enable Blackspot Detection",
                        interactive=blackspot_ok
                    )
                    
                    blackspot_threshold = gr.Slider(
                        minimum=0.1,
                        maximum=0.9,
                        value=0.5,
                        step=0.05,
                        label="Blackspot Detection Threshold",
                        visible=blackspot_ok
                    )
                    
                    # NEW: Blackspot visualization options
                    blackspot_view_type = gr.Radio(
                        choices=["High Contrast", "Segmentation Only", "Blackspots Only", "Side by Side", "Annotated"],
                        value="High Contrast",
                        label="Blackspot Visualization Style",
                        visible=blackspot_ok
                    )
                    
                    enable_contrast = gr.Checkbox(
                        value=True,
                        label="Enable Contrast Analysis"
                    )
                    
                    contrast_threshold = gr.Slider(
                        minimum=1.0,
                        maximum=10.0,
                        value=4.5,
                        step=0.1,
                        label="WCAG Contrast Threshold"
                    )
                
                # Analysis button
                analyze_button = gr.Button(
                    "πŸ” Analyze Environment",
                    variant="primary",
                    size="lg"
                )
            
            # Output Column
            with gr.Column(scale=2):
                # Main display (Segmentation by default)
                main_display = gr.Image(
                    label="🎯 Object Detection & Segmentation",
                    height=400,
                    interactive=False
                )
                
                # Enhanced analysis tabs
                with gr.Tabs():
                    with gr.Tab("πŸ“Š Analysis Report"):
                        analysis_report = gr.Markdown(
                            value="Upload an image and click 'Analyze Environment' to see results.",
                            elem_classes=["analysis-section"]
                        )
                    
                    if blackspot_ok:
                        with gr.Tab("⚫ Blackspot Detection"):
                            blackspot_display = gr.Image(
                                label="Blackspot Analysis (Selected View)",
                                height=300,
                                interactive=False
                            )
                        
                        with gr.Tab("πŸ” Blackspot Segmentation"):
                            blackspot_segmentation_display = gr.Image(
                                label="Pure Blackspot Segmentation",
                                height=300,
                                interactive=False
                            )
                    else:
                        blackspot_display = gr.Image(visible=False)
                        blackspot_segmentation_display = gr.Image(visible=False)
                    
                    with gr.Tab("🎨 Contrast Analysis"):
                        contrast_display = gr.Image(
                            label="Contrast Issues Visualization",
                            height=300,
                            interactive=False
                        )
        
        # Connect the interface
        analyze_button.click(
            fn=analyze_wrapper,
            inputs=[
                image_input,
                blackspot_threshold,
                contrast_threshold,
                enable_blackspot,
                enable_contrast,
                blackspot_view_type
            ],
            outputs=[
                main_display,
                blackspot_display,
                blackspot_segmentation_display,
                contrast_display,
                analysis_report
            ]
        )
        
        # Example images (optional)
        example_dir = Path("examples")
        if example_dir.exists():
            examples = [
                [str(img), 0.5, 4.5, True, True, "High Contrast"] 
                for img in example_dir.glob("*.jpg")
            ]
            
            if examples:
                gr.Examples(
                    examples=examples[:3],  # Show max 3 examples
                    inputs=[
                        image_input,
                        blackspot_threshold,
                        contrast_threshold,
                        enable_blackspot,
                        enable_contrast,
                        blackspot_view_type
                    ],
                    outputs=[
                        main_display,
                        blackspot_display,
                        blackspot_segmentation_display,
                        contrast_display,
                        analysis_report
                    ],
                    fn=analyze_wrapper,
                    label="πŸ–ΌοΈ Example Images"
                )
        
        # Footer
        gr.Markdown("""
            ---
            **NeuroNest** - Advanced AI for Alzheimer's-friendly environments  
            *Helping create safer, more accessible spaces for cognitive health*
            """)
    
    return interface

###############################
# MAIN EXECUTION - FIXED
########################################

if __name__ == "__main__":
    print(f"πŸš€ Starting NeuroNest on {DEVICE}")
    print(f"OneFormer available: {ONEFORMER_AVAILABLE}")
    
    try:
        interface = create_gradio_interface()
        
        # Fixed launch call - removed incompatible parameters
        interface.queue(max_size=10).launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=True
        )
    except Exception as e:
        logger.error(f"Failed to launch application: {e}")
        raise