File size: 20,459 Bytes
6524e7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import torch
import os
import sys
import time
import numpy as np
from PIL import Image
import cv2
import imutils
import colorsys
from scipy import ndimage
# Set CUDA device explicitly at the start
if torch.cuda.is_available():
torch.cuda.set_device(0) # Use first GPU
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
else:
print("WARNING: No GPU available, using CPU")
print("Installed the dependencies!")
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data import MetadataCatalog
from oneformer import (
add_oneformer_config,
add_common_config,
add_swin_config,
add_dinat_config,
)
from demo.defaults import DefaultPredictor
from demo.visualizer import Visualizer, ColorMode
import gradio as gr
from huggingface_hub import hf_hub_download
# Force unbuffered output for SLURM logs
sys.stdout = sys.__stdout__
sys.stderr = sys.__stderr__
# Set environment variables for better GPU performance
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['TORCH_USE_CUDA_DSA'] = '1'
# Contrast Detection Classes
class ContrastDetector:
"""Base class for contrast detection between segments"""
@staticmethod
def calculate_luminance_contrast(color1, color2):
"""Calculate WCAG luminance contrast ratio"""
def get_relative_luminance(rgb):
r, g, b = [val/255.0 for val in rgb]
r = r/12.92 if r <= 0.03928 else ((r + 0.055)/1.055) ** 2.4
g = g/12.92 if g <= 0.03928 else ((g + 0.055)/1.055) ** 2.4
b = b/12.92 if b <= 0.03928 else ((b + 0.055)/1.055) ** 2.4
return 0.2126 * r + 0.7152 * g + 0.0722 * b
lum1 = get_relative_luminance(color1)
lum2 = get_relative_luminance(color2)
lighter = max(lum1, lum2)
darker = min(lum1, lum2)
return (lighter + 0.05) / (darker + 0.05)
@staticmethod
def calculate_hue_contrast(color1, color2):
"""Calculate hue difference between two colors"""
hsv1 = colorsys.rgb_to_hsv(color1[0]/255.0, color1[1]/255.0, color1[2]/255.0)
hsv2 = colorsys.rgb_to_hsv(color2[0]/255.0, color2[1]/255.0, color2[2]/255.0)
hue_diff = abs(hsv1[0] - hsv2[0])
if hue_diff > 0.5:
hue_diff = 1 - hue_diff
return hue_diff * 2
@staticmethod
def calculate_saturation_contrast(color1, color2):
"""Calculate saturation difference between two colors"""
hsv1 = colorsys.rgb_to_hsv(color1[0]/255.0, color1[1]/255.0, color1[2]/255.0)
hsv2 = colorsys.rgb_to_hsv(color2[0]/255.0, color2[1]/255.0, color2[2]/255.0)
return abs(hsv1[1] - hsv2[1])
@staticmethod
def analyze_contrast(image, segmentation, method="luminance", threshold=4.5):
"""Analyze contrast between adjacent segments"""
unique_segments = np.unique(segmentation)
h, w = segmentation.shape
contrast_mask = np.zeros((h, w), dtype=bool)
problem_areas = []
# Calculate average colors for each segment
segment_colors = {}
for seg_id in unique_segments:
mask = segmentation == seg_id
if np.any(mask):
segment_colors[seg_id] = np.mean(image[mask], axis=0).astype(int)
# Check contrast between adjacent segments
for i in range(h):
for j in range(w):
current_seg = segmentation[i, j]
# Check 4-connected neighbors
for di, dj in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
ni, nj = i + di, j + dj
if 0 <= ni < h and 0 <= nj < w:
neighbor_seg = segmentation[ni, nj]
if current_seg != neighbor_seg:
color1 = segment_colors[current_seg]
color2 = segment_colors[neighbor_seg]
if method == "luminance":
contrast = ContrastDetector.calculate_luminance_contrast(color1, color2)
elif method == "hue":
contrast = ContrastDetector.calculate_hue_contrast(color1, color2)
threshold = 0.3 # Adjust threshold for hue
elif method == "saturation":
contrast = ContrastDetector.calculate_saturation_contrast(color1, color2)
threshold = 0.3 # Adjust threshold for saturation
if contrast < threshold:
contrast_mask[i, j] = True
problem_areas.append((current_seg, neighbor_seg, contrast))
return contrast_mask, problem_areas, segment_colors
# Rest of your code remains the same until setup_cfg function
KEY_DICT = {"Cityscapes (19 classes)": "cityscapes",
"COCO (133 classes)": "coco",
"ADE20K (150 classes)": "ade20k",}
SWIN_CFG_DICT = {"cityscapes": "configs/cityscapes/oneformer_swin_large_IN21k_384_bs16_90k.yaml",
"coco": "configs/coco/oneformer_swin_large_IN21k_384_bs16_100ep.yaml",
"ade20k": "configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml",}
SWIN_MODEL_DICT = {"cityscapes": hf_hub_download(repo_id="shi-labs/oneformer_cityscapes_swin_large",
filename="250_16_swin_l_oneformer_cityscapes_90k.pth"),
"coco": hf_hub_download(repo_id="shi-labs/oneformer_coco_swin_large",
filename="150_16_swin_l_oneformer_coco_100ep.pth"),
"ade20k": hf_hub_download(repo_id="shi-labs/oneformer_ade20k_swin_large",
filename="250_16_swin_l_oneformer_ade20k_160k.pth")
}
DINAT_CFG_DICT = {"cityscapes": "configs/cityscapes/oneformer_dinat_large_bs16_90k.yaml",
"coco": "configs/coco/oneformer_dinat_large_bs16_100ep.yaml",
"ade20k": "configs/ade20k/oneformer_dinat_large_IN21k_384_bs16_160k.yaml",}
DINAT_MODEL_DICT = {"cityscapes": hf_hub_download(repo_id="shi-labs/oneformer_cityscapes_dinat_large",
filename="250_16_dinat_l_oneformer_cityscapes_90k.pth"),
"coco": hf_hub_download(repo_id="shi-labs/oneformer_coco_dinat_large",
filename="150_16_dinat_l_oneformer_coco_100ep.pth"),
"ade20k": hf_hub_download(repo_id="shi-labs/oneformer_ade20k_dinat_large",
filename="250_16_dinat_l_oneformer_ade20k_160k.pth")
}
MODEL_DICT = {"DiNAT-L": DINAT_MODEL_DICT,
"Swin-L": SWIN_MODEL_DICT }
CFG_DICT = {"DiNAT-L": DINAT_CFG_DICT,
"Swin-L": SWIN_CFG_DICT }
WIDTH_DICT = {"cityscapes": 512,
"coco": 512,
"ade20k": 640}
# Modified to ensure CUDA device
if torch.cuda.is_available():
device = torch.device("cuda:0")
print(f"Using device: {device}")
else:
device = torch.device("cpu")
print(f"WARNING: Using CPU device")
cpu_device = torch.device("cpu")
PREDICTORS = {
"DiNAT-L": {
"Cityscapes (19 classes)": None,
"COCO (133 classes)": None,
"ADE20K (150 classes)": None
},
"Swin-L": {
"Cityscapes (19 classes)": None,
"COCO (133 classes)": None,
"ADE20K (150 classes)": None
}
}
METADATA = {
"DiNAT-L": {
"Cityscapes (19 classes)": None,
"COCO (133 classes)": None,
"ADE20K (150 classes)": None
},
"Swin-L": {
"Cityscapes (19 classes)": None,
"COCO (133 classes)": None,
"ADE20K (150 classes)": None
}
}
def setup_modules():
print("Setting up modules...")
for dataset in ["Cityscapes (19 classes)", "COCO (133 classes)", "ADE20K (150 classes)"]:
for backbone in ["DiNAT-L", "Swin-L"]:
print(f"Loading {backbone} for {dataset}...")
cfg = setup_cfg(dataset, backbone)
metadata = MetadataCatalog.get(
cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused"
)
if 'cityscapes_fine_sem_seg_val' in cfg.DATASETS.TEST_PANOPTIC[0]:
from cityscapesscripts.helpers.labels import labels
stuff_colors = [k.color for k in labels if k.trainId != 255]
metadata = metadata.set(stuff_colors=stuff_colors)
# Create predictor with explicit device
predictor = DefaultPredictor(cfg)
predictor.model.to(device)
PREDICTORS[backbone][dataset] = predictor
METADATA[backbone][dataset] = metadata
print(f"✓ Loaded {backbone} for {dataset}")
print("All modules setup complete!")
def setup_cfg(dataset, backbone):
# load config from file and command-line arguments
cfg = get_cfg()
add_deeplab_config(cfg)
add_common_config(cfg)
add_swin_config(cfg)
add_oneformer_config(cfg)
add_dinat_config(cfg)
dataset = KEY_DICT[dataset]
cfg_path = CFG_DICT[backbone][dataset]
cfg.merge_from_file(cfg_path)
# Explicitly set device to CUDA if available
if torch.cuda.is_available():
cfg.MODEL.DEVICE = 'cuda:0'
print(f"Config set to use CUDA device")
else:
cfg.MODEL.DEVICE = 'cpu'
print(f"Config set to use CPU device")
cfg.MODEL.WEIGHTS = MODEL_DICT[backbone][dataset]
cfg.freeze()
return cfg
# Rest of your functions remain the same
def panoptic_run(img, predictor, metadata):
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE)
predictions = predictor(img, "panoptic")
panoptic_seg, segments_info = predictions["panoptic_seg"]
out = visualizer.draw_panoptic_seg_predictions(
panoptic_seg.to(cpu_device), segments_info, alpha=0.5
)
visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
out_map = visualizer_map.draw_panoptic_seg_predictions(
panoptic_seg.to(cpu_device), segments_info, alpha=1, is_text=False
)
return out, out_map, predictions
def instance_run(img, predictor, metadata):
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE)
predictions = predictor(img, "instance")
instances = predictions["instances"].to(cpu_device)
out = visualizer.draw_instance_predictions(predictions=instances, alpha=0.5)
visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
out_map = visualizer_map.draw_instance_predictions(predictions=instances, alpha=1, is_text=False)
return out, out_map, predictions
def semantic_run(img, predictor, metadata):
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE)
predictions = predictor(img, "semantic")
out = visualizer.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=0.5
)
visualizer_map = Visualizer(img[:, :, ::-1], is_img=False, metadata=metadata, instance_mode=ColorMode.IMAGE)
out_map = visualizer_map.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=1, is_text=False
)
return out, out_map, predictions
TASK_INFER = {"the task is panoptic": panoptic_run, "the task is instance": instance_run, "the task is semantic": semantic_run}
def create_contrast_visualization(img, contrast_mask, problem_areas, segment_colors):
"""Create visualization of contrast issues"""
# Copy original image
contrast_viz = img.copy()
# Highlight low contrast boundaries
boundary_color = (255, 0, 0) # Red for problem areas
contrast_viz[contrast_mask] = boundary_color
# Add information overlay
info_text = f"Low contrast areas detected: {len(problem_areas)}"
cv2.putText(contrast_viz, info_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
return contrast_viz
def segment_and_analyze(path, task, dataset, backbone, enable_contrast, contrast_method, contrast_threshold):
# Get predictions and segmentation visualization
predictor = PREDICTORS[backbone][dataset]
metadata = METADATA[backbone][dataset]
img = cv2.imread(path)
width = WIDTH_DICT[KEY_DICT[dataset]]
img = imutils.resize(img, width=width)
out, out_map, predictions = TASK_INFER[task](img, predictor, metadata)
out_img = Image.fromarray(out.get_image())
out_map_img = Image.fromarray(out_map.get_image())
if not enable_contrast:
return out_img, out_map_img, None, None
# Extract segmentation mask from predictions
if task == "the task is semantic":
seg_mask = predictions["sem_seg"].argmax(dim=0).cpu().numpy()
elif task == "the task is panoptic":
seg_mask, _ = predictions["panoptic_seg"]
seg_mask = seg_mask.cpu().numpy()
elif task == "the task is instance":
# For instance segmentation, create a mask from instances
instances = predictions["instances"].to("cpu")
seg_mask = np.zeros(img.shape[:2], dtype=np.int32)
for i, mask in enumerate(instances.pred_masks):
seg_mask[mask] = i + 1
# Analyze contrast
contrast_mask, problem_areas, segment_colors = ContrastDetector.analyze_contrast(
img, seg_mask, method=contrast_method, threshold=contrast_threshold
)
# Create contrast visualization
contrast_viz = create_contrast_visualization(img, contrast_mask, problem_areas, segment_colors)
contrast_viz_img = Image.fromarray(contrast_viz[:, :, ::-1]) # Convert BGR to RGB
# Generate analysis report
report = f"### Contrast Analysis Report\n\n"
report += f"**Method:** {contrast_method.capitalize()}\n"
report += f"**Threshold:** {contrast_threshold}\n"
report += f"**Total segments:** {len(segment_colors)}\n"
report += f"**Low contrast boundaries found:** {len(problem_areas)}\n\n"
if problem_areas:
report += "**Problem Areas:**\n"
for i, (seg1, seg2, contrast_value) in enumerate(problem_areas[:10]): # Show first 10
report += f"- Segments {seg1} and {seg2}: Contrast ratio = {contrast_value:.2f}\n"
if len(problem_areas) > 10:
report += f"... and {len(problem_areas) - 10} more\n"
return out_img, out_map_img, contrast_viz_img, report
title = "<h1 style='text-align: center'>OneFormer:DIEGO MENTORIA MILIONÁRIA - APP 1</h1>"
description = "<p style='font-size: 14px; margin: 5px; font-weight: w300; text-align: center'> <a href='https://github.com/lolout1/sam2Contrast' style='text-decoration:none' target='_blank'>NeuroNest Contrast Model</a></p>" \
+ "<p style='font-size: 16px; margin: 5px; font-weight: w600; text-align: center'> <a href='https://praeclarumjj3.github.io/oneformer/' target='_blank'>Project Page</a> | <a href='https://arxiv.org/abs/2211.06220' target='_blank'>ArXiv Paper</a> | <a href='https://github.com/SHI-Labs/OneFormer' target='_blank'>Github Repo</a></p>" \
+ "<p style='text-align: center; margin: 5px; font-size: 14px; font-weight: w300;'> \
This model leverages the OneFormer architecture to perform comprehensive image segmentation and labeling across multiple tasks. The system can identify and segment various objects, structures, and regions within images with high accuracy. It supports semantic, instance, and panoptic segmentation modes, enabling detailed analysis of indoor and outdoor environments. The model excels at distinguishing between different classes of objects, from common everyday items to complex urban structures, making it particularly useful for environmental analysis and scene understanding applications.\
</p>" \
+ "<p style='text-align: center; font-size: 14px; margin: 5px; font-weight: w300;'> [Note: Inference on CPU may take upto 2 minutes. On a single RTX A6000 GPU, OneFormer is able to inference at more than 15 FPS.]</p>"
# Main execution with error handling
if __name__ == "__main__":
try:
print("Starting setup...")
setup_modules()
print("Creating Gradio interface...")
with gr.Blocks(title="OneFormer with Contrast Detection") as iface:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="filepath")
task = gr.Radio(
choices=["the task is panoptic", "the task is instance", "the task is semantic"],
value="the task is panoptic",
label="Task Token Input"
)
dataset = gr.Radio(
choices=["COCO (133 classes)", "Cityscapes (19 classes)", "ADE20K (150 classes)"],
value="COCO (133 classes)",
label="Model"
)
backbone = gr.Radio(
choices=["DiNAT-L", "Swin-L"],
value="DiNAT-L",
label="Backbone"
)
with gr.Accordion("Contrast Detection Options", open=False):
enable_contrast = gr.Checkbox(
label="Enable Contrast Detection",
value=False
)
contrast_method = gr.Radio(
choices=["luminance", "hue", "saturation"],
value="luminance",
label="Contrast Method"
)
contrast_threshold = gr.Slider(
minimum=1.0,
maximum=10.0,
value=4.5,
step=0.1,
label="Contrast Threshold (WCAG AA is 4.5)"
)
submit_btn = gr.Button("Analyze", variant="primary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Segmentation Results"):
seg_output = gr.Image(type="pil", label="Segmentation Overlay")
seg_map = gr.Image(type="pil", label="Segmentation Map")
with gr.TabItem("Contrast Analysis"):
contrast_viz = gr.Image(type="pil", label="Contrast Visualization")
contrast_report = gr.Markdown(label="Contrast Analysis Report")
examples = [
["examples/coco.jpeg", "the task is panoptic", "COCO (133 classes)", "DiNAT-L", False, "luminance", 4.5],
["examples/cityscapes.png", "the task is panoptic", "Cityscapes (19 classes)", "DiNAT-L", False, "luminance", 4.5],
["examples/ade20k.jpeg", "the task is panoptic", "ADE20K (150 classes)", "DiNAT-L", False, "luminance", 4.5]
]
gr.Examples(
examples=examples,
inputs=[input_image, task, dataset, backbone, enable_contrast, contrast_method, contrast_threshold],
outputs=[seg_output, seg_map, contrast_viz, contrast_report],
fn=segment_and_analyze,
cache_examples=False
)
submit_btn.click(
fn=segment_and_analyze,
inputs=[input_image, task, dataset, backbone, enable_contrast, contrast_method, contrast_threshold],
outputs=[seg_output, seg_map, contrast_viz, contrast_report]
)
print("Launching Gradio app...")
iface.launch(server_name="0.0.0.0", server_port=7860, share=True)
except Exception as e:
print(f"Error occurred: {str(e)}")
import traceback
traceback.print_exc()
sys.exit(1)
|