File size: 14,156 Bytes
6524e7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import torch
import numpy as np
from PIL import Image
import cv2
import imutils
import os
import sys
import time
import colorsys
from scipy import ndimage
import gradio as gr
from huggingface_hub import hf_hub_download
# Detectron2 imports
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data import MetadataCatalog
from detectron2.engine import DefaultPredictor as DetectronPredictor
from detectron2 import model_zoo
# OneFormer imports
from oneformer import (
add_oneformer_config,
add_common_config,
add_swin_config,
add_dinat_config,
)
from demo.defaults import DefaultPredictor as OneFormerPredictor
from demo.visualizer import Visualizer, ColorMode
# NeuroNest contrast detection imports
from utils.contrast_detector import ContrastDetector
from utils.luminance_contrast import LuminanceContrastDetector
from utils.hue_contrast import HueContrastDetector
from utils.saturation_contrast import SaturationContrastDetector
from utils.combined_contrast import CombinedContrastDetector
# Set threads for CPU optimization
torch.set_num_threads(4)
########################################
# GLOBAL CONFIGURATIONS
########################################
# OneFormer configurations
KEY_DICT = {"ADE20K (150 classes)": "ade20k"}
SWIN_CFG_DICT = {
"ade20k": "configs/ade20k/oneformer_swin_large_IN21k_384_bs16_160k.yaml",
}
SWIN_MODEL_DICT = {
"ade20k": hf_hub_download(
repo_id="shi-labs/oneformer_ade20k_swin_large",
filename="250_16_swin_l_oneformer_ade20k_160k.pth"
)
}
DINAT_CFG_DICT = {
"ade20k": "configs/ade20k/oneformer_dinat_large_IN21k_384_bs16_160k.yaml",
}
DINAT_MODEL_DICT = {
"ade20k": hf_hub_download(
repo_id="shi-labs/oneformer_ade20k_dinat_large",
filename="250_16_dinat_l_oneformer_ade20k_160k.pth"
)
}
MODEL_DICT = {"DiNAT-L": DINAT_MODEL_DICT, "Swin-L": SWIN_MODEL_DICT}
CFG_DICT = {"DiNAT-L": DINAT_CFG_DICT, "Swin-L": SWIN_CFG_DICT}
WIDTH_DICT = {"ade20k": 640}
# Contrast detector mapping
CONTRAST_DETECTORS = {
"Luminance (WCAG)": LuminanceContrastDetector(),
"Hue": HueContrastDetector(),
"Saturation": SaturationContrastDetector(),
"Combined": CombinedContrastDetector()
}
# Device configuration
cpu_device = torch.device("cpu")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Model storage
ONEFORMER_PREDICTORS = {
"DiNAT-L": {"ADE20K (150 classes)": None},
"Swin-L": {"ADE20K (150 classes)": None}
}
ONEFORMER_METADATA = {
"DiNAT-L": {"ADE20K (150 classes)": None},
"Swin-L": {"ADE20K (150 classes)": None}
}
########################################
# MASK R-CNN SETUP AND FUNCTIONS
########################################
def load_maskrcnn_model(weights_path, device="cuda", threshold=0.5):
"""Load Mask R-CNN model for blackspot detection"""
cfg = get_cfg()
cfg.merge_from_file(
model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 # [Floors, blackspot]
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = threshold
cfg.MODEL.WEIGHTS = weights_path
# Fix: Convert torch.device to string
cfg.MODEL.DEVICE = str(device) if isinstance(device, torch.device) else device
return DetectronPredictor(cfg)
def postprocess_blackspot_masks(im, instances, show_floor=True, show_blackspot=True):
"""Extract floor and blackspot masks from Mask R-CNN predictions"""
height, width = im.shape[:2]
pred_classes = instances.pred_classes.cpu().numpy()
pred_masks = instances.pred_masks.cpu().numpy()
combined_floor_mask = np.zeros((height, width), dtype=bool)
final_blackspot = np.zeros((height, width), dtype=bool)
for cls_id, mask in zip(pred_classes, pred_masks):
if cls_id == 0 and show_floor: # Floor class
combined_floor_mask |= mask
elif cls_id == 1 and show_blackspot: # Blackspot class
final_blackspot |= mask
return combined_floor_mask.astype(np.uint8), final_blackspot.astype(np.uint8)
########################################
# ONEFORMER SETUP AND FUNCTIONS
########################################
def setup_oneformer_modules():
"""Initialize OneFormer models"""
for dataset in ["ADE20K (150 classes)"]:
for backbone in ["DiNAT-L", "Swin-L"]:
cfg = setup_oneformer_cfg(dataset, backbone)
metadata = MetadataCatalog.get(
cfg.DATASETS.TEST_PANOPTIC[0] if len(cfg.DATASETS.TEST_PANOPTIC) else "__unused"
)
ONEFORMER_PREDICTORS[backbone][dataset] = OneFormerPredictor(cfg)
ONEFORMER_METADATA[backbone][dataset] = metadata
def setup_oneformer_cfg(dataset, backbone):
"""Setup OneFormer configuration"""
cfg = get_cfg()
add_deeplab_config(cfg)
add_common_config(cfg)
add_swin_config(cfg)
add_oneformer_config(cfg)
add_dinat_config(cfg)
dataset = KEY_DICT[dataset]
cfg_path = CFG_DICT[backbone][dataset]
cfg.merge_from_file(cfg_path)
cfg.MODEL.DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
cfg.MODEL.WEIGHTS = MODEL_DICT[backbone][dataset]
cfg.freeze()
return cfg
def semantic_run(img, predictor, metadata):
"""Run OneFormer semantic segmentation"""
visualizer = Visualizer(img[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE)
predictions = predictor(img, "semantic")
out = visualizer.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(cpu_device), alpha=0.5
)
return out, predictions["sem_seg"].argmax(dim=0).to(cpu_device).numpy()
########################################
# INTEGRATED ANALYSIS FUNCTION
########################################
def integrated_analysis(image_path,
# Blackspot detection parameters
blackspot_threshold, show_floor, show_blackspot,
# Contrast detection parameters
enable_contrast, backbone, contrast_method, contrast_threshold):
"""
Perform integrated analysis with both blackspot detection and contrast analysis
"""
# Read the image
im = cv2.imread(image_path)
if im is None:
return "Error: could not read image!", None, None, None
# Resize for OneFormer if contrast analysis is enabled
if enable_contrast:
width = WIDTH_DICT["ade20k"]
im_resized = imutils.resize(im, width=width)
else:
im_resized = im
# Part 1: Blackspot Detection with Mask R-CNN
blackspot_text = []
blackspot_viz = None
if show_floor or show_blackspot:
weights_path = "./output_floor_blackspot/model_0004999.pth"
maskrcnn_predictor = load_maskrcnn_model(weights_path, device, blackspot_threshold)
# Run blackspot detection
outputs = maskrcnn_predictor(im)
instances = outputs["instances"]
# Post-process masks
floor_mask, blackspot_mask = postprocess_blackspot_masks(im, instances, show_floor, show_blackspot)
# Create visualization
blackspot_overlay = im.copy()
overlay = np.zeros_like(im)
if show_floor:
overlay[floor_mask > 0] = (0, 255, 0) # Green for floor
if show_blackspot:
overlay[blackspot_mask > 0] = (0, 0, 255) # Red for blackspot
blackspot_overlay = cv2.addWeighted(im, 1.0, overlay, 0.5, 0)
blackspot_viz = Image.fromarray(cv2.cvtColor(blackspot_overlay, cv2.COLOR_BGR2RGB))
# Calculate statistics
blackspot_area = int(blackspot_mask.sum())
floor_area = int(floor_mask.sum())
blackspot_text.append(f"### Blackspot Detection Results")
blackspot_text.append(f"**Threshold:** {blackspot_threshold:.2f}")
if show_floor:
blackspot_text.append(f"**Floor area:** {floor_area} pixels")
if show_blackspot:
blackspot_text.append(f"**Blackspot area:** {blackspot_area} pixels")
if floor_area > 0 and show_floor:
percentage = (blackspot_area / floor_area) * 100
blackspot_text.append(f"**Blackspot coverage:** {percentage:.2f}% of floor area")
# Part 2: Contrast Analysis with OneFormer
segmentation_viz = None
contrast_viz = None
contrast_text = []
if enable_contrast:
dataset = "ADE20K (150 classes)"
predictor = ONEFORMER_PREDICTORS[backbone][dataset]
metadata = ONEFORMER_METADATA[backbone][dataset]
# Get segmentation
out, seg_mask = semantic_run(im_resized, predictor, metadata)
segmentation_viz = Image.fromarray(out.get_image())
# Analyze contrast
img_rgb = cv2.cvtColor(im_resized, cv2.COLOR_BGR2RGB)
detector = CONTRAST_DETECTORS[contrast_method]
contrast_image, problem_areas, stats = detector.analyze(
img_rgb, seg_mask, contrast_threshold
)
contrast_viz = Image.fromarray(contrast_image)
# Create stats text
contrast_text.append(f"### Contrast Analysis Results")
contrast_text.append(f"**Method:** {contrast_method}")
contrast_text.append(f"**Threshold:** {contrast_threshold:.2f}")
contrast_text.append(f"**Problem Areas:** {stats['problem_count']}")
if 'min_contrast' in stats:
contrast_text.append(f"**Min Contrast:** {stats['min_contrast']:.2f}")
if 'max_contrast' in stats:
contrast_text.append(f"**Max Contrast:** {stats['max_contrast']:.2f}")
if 'average_contrast' in stats:
contrast_text.append(f"**Average Contrast:** {stats['average_contrast']:.2f}")
# Combine results
combined_text = []
if blackspot_text:
combined_text.extend(blackspot_text)
if contrast_text:
if blackspot_text:
combined_text.append("\n")
combined_text.extend(contrast_text)
return "\n".join(combined_text), blackspot_viz, segmentation_viz, contrast_viz
########################################
# GRADIO INTERFACE
########################################
# Initialize models
print("Initializing OneFormer models...")
setup_oneformer_modules()
title = "NeuroNest: Integrated Blackspot & Contrast Detection"
description = """
This integrated system combines:
1. **Blackspot Detection**: Uses Mask R-CNN to detect blackspots on floors
2. **Contrast Analysis**: Uses OneFormer segmentation to analyze contrast between objects
Both analyses help identify potential accessibility issues for individuals with Alzheimer's disease.
"""
# Create the Gradio interface
with gr.Blocks(title=title) as demo:
gr.Markdown(f"# {title}")
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
# Input image
image_input = gr.Image(label="Input Image", type="filepath")
# Blackspot detection controls
with gr.Accordion("Blackspot Detection Settings", open=True):
blackspot_threshold = gr.Slider(
minimum=0.1, maximum=0.9, value=0.5, step=0.05,
label="Blackspot Detection Threshold"
)
with gr.Row():
show_floor = gr.Checkbox(value=True, label="Show Floor")
show_blackspot = gr.Checkbox(value=True, label="Show Blackspots")
# Contrast analysis controls
with gr.Accordion("Contrast Analysis Settings", open=True):
enable_contrast = gr.Checkbox(value=True, label="Enable Contrast Analysis")
backbone = gr.Radio(
choices=["Swin-L", "DiNAT-L"],
value="Swin-L",
label="OneFormer Backbone"
)
contrast_method = gr.Radio(
choices=["Luminance (WCAG)", "Hue", "Saturation", "Combined"],
value="Luminance (WCAG)",
label="Contrast Detection Method"
)
contrast_threshold = gr.Slider(
minimum=1.0, maximum=10.0, value=4.5, step=0.1,
label="Contrast Threshold"
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Column(scale=2):
# Output displays
with gr.Tabs():
with gr.Tab("Analysis Report"):
analysis_text = gr.Textbox(label="Analysis Results", lines=10)
with gr.Tab("Blackspot Detection"):
blackspot_output = gr.Image(label="Blackspot Visualization")
with gr.Tab("Segmentation"):
segmentation_output = gr.Image(label="OneFormer Segmentation")
with gr.Tab("Contrast Analysis"):
contrast_output = gr.Image(label="Contrast Visualization")
# Connect the interface
analyze_btn.click(
fn=integrated_analysis,
inputs=[
image_input,
blackspot_threshold, show_floor, show_blackspot,
enable_contrast, backbone, contrast_method, contrast_threshold
],
outputs=[
analysis_text, blackspot_output, segmentation_output, contrast_output
]
)
# Examples
gr.Examples(
examples=[
["examples/indoor_room.jpg", 0.5, True, True, True, "Swin-L", "Luminance (WCAG)", 4.5],
["examples/living_room.jpg", 0.7, True, True, True, "DiNAT-L", "Combined", 3.0],
],
inputs=[
image_input,
blackspot_threshold, show_floor, show_blackspot,
enable_contrast, backbone, contrast_method, contrast_threshold
]
)
if __name__ == "__main__":
print(f"Launching integrated NeuroNest app on device: {device}")
demo.queue().launch(server_name="0.0.0.0", share=True)
|