Spaces:
Build error
Build error
Create app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,14 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from textblob import TextBlob
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
from deepface import DeepFace
|
6 |
-
import tempfile
|
7 |
-
import moviepy.editor as mp
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
blob = TextBlob(text)
|
12 |
-
sentiment = blob.sentiment.polarity
|
13 |
-
if sentiment > 0:
|
14 |
-
result = "Positive Sentiment 😊"
|
15 |
-
elif sentiment < 0:
|
16 |
-
result = "Negative Sentiment 😢"
|
17 |
-
else:
|
18 |
-
result = "Neutral Sentiment 😐"
|
19 |
-
return result
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
analysis = DeepFace.analyze(image, actions=['emotion'], enforce_detection=False)
|
25 |
-
emotion = analysis[0]['dominant_emotion']
|
26 |
-
return f"Detected Emotion: {emotion}"
|
27 |
-
except Exception as e:
|
28 |
-
return f"Error: {str(e)}"
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
with open(temp_video_path, "wb") as f:
|
34 |
-
f.write(video_file.read())
|
35 |
-
|
36 |
-
clip = mp.VideoFileClip(temp_video_path)
|
37 |
-
frame = clip.get_frame(clip.duration / 2) # take frame at middle
|
38 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
39 |
-
|
40 |
-
try:
|
41 |
-
analysis = DeepFace.analyze(frame_rgb, actions=['emotion'], enforce_detection=False)
|
42 |
-
emotion = analysis[0]['dominant_emotion']
|
43 |
-
return f"Detected Emotion in Video: {emotion}"
|
44 |
-
except Exception as e:
|
45 |
-
return f"Error: {str(e)}"
|
46 |
-
|
47 |
-
# Gradio Interface
|
48 |
-
with gr.Blocks() as demo:
|
49 |
-
gr.Markdown("# Emotion & Sentiment Analyzer 🎯")
|
50 |
-
gr.Markdown("Analyze Text, Face (Image), or Video for emotions!")
|
51 |
-
|
52 |
-
with gr.Tabs():
|
53 |
-
with gr.TabItem("Text Sentiment"):
|
54 |
-
text_input = gr.Textbox(label="Enter Text")
|
55 |
-
text_output = gr.Label()
|
56 |
-
text_button = gr.Button("Analyze Text")
|
57 |
-
text_button.click(analyze_text, inputs=text_input, outputs=text_output)
|
58 |
-
|
59 |
-
with gr.TabItem("Face Emotion (Image)"):
|
60 |
-
image_input = gr.Image(type="numpy", label="Upload Face Image")
|
61 |
-
image_output = gr.Label()
|
62 |
-
image_button = gr.Button("Analyze Face Emotion")
|
63 |
-
image_button.click(analyze_face, inputs=image_input, outputs=image_output)
|
64 |
-
|
65 |
-
with gr.TabItem("Video Emotion"):
|
66 |
-
video_input = gr.File(label="Upload Video (.mp4)")
|
67 |
-
video_output = gr.Label()
|
68 |
-
video_button = gr.Button("Analyze Video Emotion")
|
69 |
-
video_button.click(analyze_video, inputs=video_input, outputs=video_output)
|
70 |
-
|
71 |
-
demo.launch()
|
|
|
1 |
+
# In Colab
|
2 |
+
code = '''
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
def greet(name):
|
6 |
+
return "Hello " + name + "!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
9 |
+
iface.launch()
|
10 |
+
'''
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Save it as app.py
|
13 |
+
with open("app.py", "w") as f:
|
14 |
+
f.write(code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|