File size: 19,039 Bytes
de5f363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a5451a
 
 
 
 
 
3544bc7
 
3a5451a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de5f363
 
 
 
 
 
fab65e0
de5f363
 
3a5451a
de5f363
 
 
 
 
 
 
 
3544bc7
de5f363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
782ac4b
 
 
de5f363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
866ab34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

import warnings
warnings.filterwarnings("ignore")
import io
import os
import time
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=RuntimeWarning)
import pandas as pd
import csv
import ast
from tqdm import tqdm
from operator import itemgetter
import numpy as np
import re
import datetime
import html
from joblib import Parallel, delayed
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
#plt.style.use('seaborn-paper')
import holoviews as hv
from holoviews import opts, dim
from bokeh.sampledata.les_mis import data
from bokeh.io import show
from bokeh.sampledata.les_mis import data
import panel as pn
#pn.extension(design='material')

import bokeh
from bokeh.resources import INLINE
from holoviews.operation.timeseries import rolling, rolling_outlier_std
hv.extension('bokeh')

## LOAD DATASETS

data = './data'


def read_freq_map(filename):
    df = pd.read_csv(os.path.join(data,filename), sep='	')
    #df = df.head(10)
    if 'Unnamed: 0' in df.columns:
        df = df.drop('Unnamed: 0', axis=1)
    column_0 = df.columns[0]
    column_1 = df.columns[1]
    freqmap = dict(zip(df[column_0], df[column_1]))
    return freqmap


def read_ont_freq_dataframe(filename):
    df = pd.read_csv(os.path.join(data,filename), sep='	')
    #print(df)
    if 'Unnamed: 0' in df.columns:
        df = df.drop('Unnamed: 0', axis=1)
    column_0 = df.columns[0]
    column_1 = df.columns[1]
    freqmap = dict(zip(df[column_0], df[column_1]))
    return freqmap


entityTypesFreqMap = read_freq_map('entityTypes.tsv')
relationTypesFreqMap = read_freq_map('relationTypes.tsv')
topDrugEntities = read_freq_map('topDrugs.tsv')
#print(topDrugEntities)
topConditionEntities = read_freq_map('topConditions.tsv')
topDrugOnts_df = pd.read_csv(os.path.join(data,'topDrugOntologies.tsv'), sep='\t')
topConditionOnts_df = pd.read_csv(os.path.join(data,'topConditionOntologies.tsv'), sep='\t')


grouping_filtered = pd.read_csv(os.path.join(data, 'drugReviewsCausal_relations.tsv'), sep="	")



################################# CREATE CHARTS ############################
def create_type_bar_charts(entRelsButton, **kwargs):
  if entRelsButton=='Entity':
    dictionary = entityTypesFreqMap
    return hv.Bars(dictionary, hv.Dimension('Entity Types'), 'Frequency').opts( framewise=True, xrotation=45,width=1200, height=600)
  elif entRelsButton=='Relation':
    dictionary = relationTypesFreqMap
    return hv.Bars(dictionary, hv.Dimension('Relation Types'), 'Frequency').opts(framewise=True, xrotation=45,width=1200, height=600)


def create_ent_bar_charts(ents, **kwargs):
# Create button widgets for each label
    drug_buttons = []
    condition_buttons = []
    for i, drg in enumerate(list(topDrugEntities.keys())):
        button = pn.widgets.Button(name=drg, width=150)
        ## Open the associated URL in a new tab when button is clicked
        button.js_on_click(code=f'window.open("https://api-vast.jrc.service.ec.europa.eu/describe/?url=http://causaldrugskg.org/causaldrugskg/resource/{drg}", "_blank");')
        drug_buttons.append(button)
    for i, cnd in enumerate(list(topConditionEntities.keys())):
        button = pn.widgets.Button(name=cnd, width=150)
        ## Open the associated URL in a new tab when button is clicked
        button.js_on_click(
            code=f'window.open("https://api-vast.jrc.service.ec.europa.eu/describe/?url=http://causaldrugskg.org/causaldrugskg/resource/{cnd}", "_blank");')
        condition_buttons.append(button)

        # Stack the buttons vertically (or wrap in a GridBox for nicer layout)
    drug_button_column = pn.Column(*drug_buttons, sizing_mode='stretch_width')
    condition_button_column = pn.Column(*condition_buttons, sizing_mode='stretch_width')


    if ents=='Drug':
        dictionary = topDrugEntities
        bars = hv.Bars(dictionary, hv.Dimension('Drug Entities'), 'Frequency').opts(framewise=True, xrotation=45,width=1200, height=600,  fontsize={'xticks': 18, 'xlabel':18, 'ylabel':16})
        # Combine everything into a Panel layout
        layout = pn.Row(bars, drug_button_column)
        return layout
    elif ents=='Condition':
        dictionary = topConditionEntities
        bars = hv.Bars(dictionary, hv.Dimension('Condition Entities'), 'Frequency').opts(framewise=True, xrotation=45,width=1200, height=600, fontsize={'xticks': 18, 'xlabel':18, 'ylabel':16})
        layout = pn.Row(bars, condition_button_column)
        return layout


def create_ontology_bar_charts(ents, **kwargs):
    if ents=='Drug':
        df = pd.DataFrame({
            'Drug_Ontologies': [ont.split('/')[-1] for ont in topDrugOnts_df['ontology']],
            'Frequency': list(topDrugOnts_df['count']),
            'url': list(topDrugOnts_df['ontology_url'])  # using full keys as hyperlinks
        })
        drug_ontolgy_buttons = []
        for i,row in df.iterrows():
            button = pn.widgets.Button(name=row['Drug_Ontologies'], width=150)
            ## Open the associated URL in a new tab when button is clicked
            url = row["url"]
            button.js_on_click(
                code=f'window.open("{url}", "_blank");')
            drug_ontolgy_buttons.append(button)
        drug_ontology_column = pn.Column(*drug_ontolgy_buttons, sizing_mode='stretch_width')

        # Create bar chart with label as x-axis
        bars = hv.Bars(df, kdims=['Drug_Ontologies'], vdims=['Frequency'])
        bars.opts(
            framewise=True,
            tools=['hover'],
            width=1200,
            height=600,
            show_legend=True,
            xrotation=45,
            xlabel='Drug_Ontologies',
            ylabel='Frequency',
            hover_tooltips=[
                ("Drug_Ontologies", "@Drug_Ontologies"),
                ("Frequency", "@Frequency")
            ]
        )
        #links_panel = pn.Column(*[pn.pane.Markdown(f"[{row.Drug_Ontologies}]({row.url})", width=400) for _, row in df.iterrows()],name='Links')
        layout = pn.Row(bars, drug_ontology_column)
        return layout
    elif ents=='Condition':
        df = pd.DataFrame({
              'Condition_Ontologies': [ont.split('/')[-1] for ont in topConditionOnts_df['ontology']],
              'Frequency': list(topConditionOnts_df['count']),
              'url': list(topConditionOnts_df['ontology_url'])  # using full keys as hyperlinks
          })
        condition_ontolgy_buttons = []
        for i, row in df.iterrows():
            button = pn.widgets.Button(name=row['Condition_Ontologies'], width=150)
            ## Open the associated URL in a new tab when button is clicked
            url = row["url"]
            button.js_on_click(
                code=f'window.open("{url}", "_blank");')
            condition_ontolgy_buttons.append(button)
        condition_ontology_column = pn.Column(*condition_ontolgy_buttons, sizing_mode='stretch_width')
        # Create bar chart with label as x-axis
        bars = hv.Bars(df, kdims=['Condition_Ontologies'], vdims=['Frequency'])
        bars.opts(
        framewise=True,
        tools=['hover'],
        width=1200,
        height=600,
        show_legend=True,
        xrotation=45,
        xlabel='Condition_Ontologies',
        ylabel='Frequency',
        hover_tooltips=[
            ("Condition Ontologies", "@Condition Ontologies"),
            ("Frequency", "@Frequency") ])
        #links_panel = pn.Column(*[pn.pane.Markdown(f"[{row.Condition_Ontologies}]({row.url})", width=400) for _, row in df.iterrows()],name='Links')
        layout = pn.Row(bars, condition_ontology_column)
        return layout

############################# WIDGETS & CALLBACK ###########################################

def filter_data0(df, min_value):
    filtered_df = df[df['value'] >= min_value]
    return filtered_df


def plot_chord_new(df,min_value):
    filtered_df = filter_data0(df, min_value)
  # Create a Holoviews Dataset for nodes
    nodes = hv.Dataset(filtered_df, 'index')
    nodes.data.head()
    chord = hv.Chord(filtered_df, ['source', 'target'], ['value'])


    # calculate positions for labels (simple approximation for circular layout)
    num_nodes = len(nodes.data)
    angles = np.linspace(0, 2 * np.pi, num_nodes, endpoint=False)
    radius = 1.05  # slightly outside the chord circle

    label_data = []
    for i, row in nodes.data.iterrows():
        angle = angles[i]
        x = radius * np.cos(angle)
        y = radius * np.sin(angle)
        label_data.append((x, y, row['index']))

    labels = hv.Labels(label_data, ['x', 'y'], 'text')

    layout = chord.opts(
        opts.Chord(
            labels=None,  # remove default labels
            node_color=hv.dim('index').str(),
            edge_color=hv.dim('source').str(),
            cmap='Category20',
            edge_cmap='Category20',
            label_text_color='black',
            width=800,
            height=800,
            tools=['hover']
        )
    ) * labels.opts(
        text_font_size='9pt',
        text_align='center',
        text_baseline='middle'
    )
    return layout


def plot_chord(df,min_value):
    filtered_df = filter_data0(df, min_value)
  # Create a Holoviews Dataset for nodes
    nodes = hv.Dataset(filtered_df, 'index')
    nodes.data.head()
    chord = hv.Chord(filtered_df, ['source', 'target'], ['value'])
    return chord.opts(opts.Chord(cmap='Category20', edge_cmap='Category20', label_text_color="white",  node_color = hv.dim('index').str(),  edge_color = hv.dim('source').str(), labels = 'index', label_text_font_size="12pt", width=800, height=800))



def chordify_triples(rel_grouping, min_val):
     # Define range for minimum value slider
    min_value_range = rel_grouping['value'].unique()
    min_value_range.sort()
    min_value_range = min_value_range[min_value_range > min_val]


    # Define HoloMap with minimum value and attribute as key dimensions
    holomap = hv.HoloMap({min_value: plot_chord(rel_grouping, min_value)
                          for min_value in min_value_range},
                         kdims=['Show triples with support greater than']
                         )
    return holomap


# https://tabler-icons.io/
button1 = pn.widgets.Button(name="Introduction", button_type="warning", icon="file-info", styles={"width": "100%"})
button2 = pn.widgets.Button(name="Top Key Entities", button_type="warning", icon="chart-bar", styles={"width": "100%"})
button3 = pn.widgets.Button(name="Entity/Relation Types:", button_type="warning",  icon="chart-histogram", styles={"width": "100%"})
button4 = pn.widgets.Button(name="Ontology Coverage", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
#button5 = pn.widgets.Button(name="Causal Relation Chord Diagrams", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})

markdown_button_style = """
<div style="background-color: #f0f0f0; /* Matches 'warning' button type */
    color: white;
    font-weight: bold;
    padding: 8px 12px;
    border-radius: 4px;
    text-align: center;
    width: 100%;
">
Causal Relation Chord Diagrams
</div>
"""
#button5 = pn.pane.Markdown(markdown_button_style, width_policy="max")

button5 = pn.pane.Markdown("<div style='background-color:#f7c045; color: black; padding:8px 12px; font-weight: bold; border:1px solid #ccc; " "border-radius:8px; text-align:center; width:100%; white-space: nowrap;'>Causal Relation Chord Diagrams</div>", width=225, height=30, margin=(9, 9))


# Define child buttons
child_button_1 = pn.widgets.Button(name="Cause", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
child_button_2 = pn.widgets.Button(name="Enable", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
child_button_3 = pn.widgets.Button(name="Prevent", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
child_button_4 = pn.widgets.Button(name="Hinder", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
child_button_5 = pn.widgets.Button(name="Other", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
# Layout: dendrogram-style using vertical + indent
tree_layout = pn.Column(
    button5,
    pn.Row(pn.Spacer(),  # indent
           pn.Column(child_button_1, child_button_2,child_button_3,child_button_4, child_button_5)),
sizing_mode='stretch_width'
)

entRelsButton = pn.widgets.RadioButtonGroup(name='### Select', options=['Entity','Relation'], value = 'Entity' )

entTypeButton = pn.widgets.RadioButtonGroup(name='### Select Entity Type', options=list(entityTypesFreqMap.keys()), value='Drug')

#relationTypeButton = pn.widgets.RadioButtonGroup(options=list(relationTypesFreqMap.keys()), value='Cause', name='Select Causal Relation')

# Define the callback function to update the HoloMap
#def update_holomap(event):
#    initial_holomap.object = filter_triples(event.new)


# Create the initial HoloMap
#initial_holomap = filter_triples(relationTypeButton.value)

# Bind the callback function to the value change event of the RadioButton widget
#relationTypeButton.param.watch(update_holomap, 'value')


def show_page(page_key):
    main_area.clear()
    main_area.append(mapping[page_key])

button1.on_click(lambda event: show_page("Page1"))
button2.on_click(lambda event: show_page("Page2"))
button3.on_click(lambda event: show_page("Page3"))
button4.on_click(lambda event: show_page("Page4"))
#button5.on_click(lambda event: show_page("Page5"))
child_button_1.on_click(lambda event: show_page("Page5a"))
child_button_2.on_click(lambda event: show_page("Page5b"))
child_button_3.on_click(lambda event: show_page("Page5c"))
child_button_4.on_click(lambda event: show_page("Page5d"))
child_button_5.on_click(lambda event: show_page("Page5e"))


### CREATE PAGE LAYOUTS

def CreatePage1():
    return pn.Column(pn.pane.Markdown("""

This is a dashboard for exploring a causal relation knowledge graph automatically extracted from a collection of drug reviews. The source data consists of around 19200 reviews from the **Drug Reviews (Druglib.com)**  dataset (https://archive.ics.uci.edu/dataset/461/drug+review+dataset+druglib+com) containing patient reviews on specific drugs along with related conditions, crawled from online pharmaceutical review sites.
The causal relations represented in the KG are defined by the **MIMICause** schema (https://huggingface.co/datasets/pensieves/mimicause). The underlying CausalDrugsKG graph is available in Turtle and RDF serialization format in the European Data portal: https://data.jrc.ec.europa.eu/dataset/acebeb4e-9789-4b5c-97ec-292ce14e75d0.


---------------------------

## Top Key Entities
Bar plots representing the occurence counts of the top 30 Drug and Condition entities in the KG, where occurrence means the entity is either the Subject or Object of an extracted triple in the KG.
Clicking on the entity name in the right legend redirects to the corresponding entry in the Virtuoso Faceted Browser endpoint of the KG 


## Entities/Relation Types 
Bar plots of the Entity and Relation type counts.


## Ontology Coverage
Bar plots representing the linking of KG entities to standard Biomedical ontologies. Bar heights indicate the number of Drug/Condition entities linked to the corresponding ontology.
Linking is performed using the Bioportal API (https://bioportal.bioontology.org/)
Clicking on the ontology name on the right legend redirects to the ontology entry page.


## Causal Relations Chord Diagrams
Entity Chord Diagrams represent the most frequently connected entity pairs within the KG through chord illustrations, serving as both Subjects and Objects of predicative triples. The size of the chords corresponds to the support of the depicted relations.
""", width=800), align="center")



def CreatePage2():
    return pn.Column(
        pn.pane.Markdown("## Top 30 Entities "),
        entTypeButton,
        pn.bind(create_ent_bar_charts, entTypeButton),
        align="center", )


def CreatePage3():
    return pn.Column(
        pn.pane.Markdown("## Entity/Relation Types "),
        entRelsButton,
        pn.bind(create_type_bar_charts, entRelsButton),
        align="center",
    )

def CreatePage4():
    return pn.Column(
        pn.pane.Markdown("## Bio-Medical Ontology Coverage "),
        entTypeButton,
        pn.bind(create_ontology_bar_charts, entTypeButton),
        align="center", )
def CreatePage5():
    return pn.Column(
        pn.pane.Markdown("## Causal Relation Chord Diagrams"),
        chordify_triples(grouping_filtered),
        align="center", )

def CreatePage5a():
    rel_grouping = grouping_filtered[grouping_filtered['causal_relation'] == 'Cause']
    return pn.Column(
        pn.pane.Markdown("## Relation Chord Diagram: Cause"),
        chordify_triples(rel_grouping,10),
        align="center", )

def CreatePage5b():
    rel_grouping = grouping_filtered[grouping_filtered['causal_relation'] == 'Enable']
    return pn.Column(
        pn.pane.Markdown("## Relation Chord Diagram: Enable"),
        chordify_triples(rel_grouping,4),
        align="center", )

def CreatePage5c():
    rel_grouping = grouping_filtered[grouping_filtered['causal_relation'] == 'Prevent']
    return pn.Column(
        pn.pane.Markdown("## Relation Chord Diagram: Prevent"),
        chordify_triples(rel_grouping,50),
        align="center", )

def CreatePage5d():
    rel_grouping = grouping_filtered[grouping_filtered['causal_relation'] == 'Hinder']
    return pn.Column(
        pn.pane.Markdown("## Relation Chord Diagram: Hinder"),
        chordify_triples(rel_grouping,10),
        align="center", )

def CreatePage5e():
    rel_grouping = grouping_filtered[grouping_filtered['causal_relation'] == 'Other']
    return pn.Column(
        pn.pane.Markdown("## Relation Chord Diagram: Other"),
        chordify_triples(rel_grouping,10),
        align="center", )
mapping = {
    "Page1": CreatePage1(),
    "Page2": CreatePage2(),
    "Page3": CreatePage3(),
    "Page4": CreatePage4(),
    #"Page5": CreatePage5(),
    "Page5a": CreatePage5a(),
    "Page5b": CreatePage5b(),
    "Page5c": CreatePage5c(),
    "Page5d": CreatePage5d(),
    "Page5e": CreatePage5e(),
}

#################### SIDEBAR LAYOUT ##########################
sidebar = pn.Column(pn.pane.Markdown("## Panels"), button1,button2,button3,
                    button4,tree_layout,
                   styles={"width": "100%", "padding": "15px"})

#################### MAIN AREA LAYOUT ##########################
main_area = pn.Column(mapping["Page1"], styles={"width":"100%"})

###################### APP LAYOUT ##############################
template = pn.template.BootstrapTemplate(
    title=" CausalDrugsKG_Dashboard ",
    sidebar=[sidebar],
    main=[main_area],
    #header_background="black",
    #site="Charting the Landscape of Digital Health",
    #theme=pn.template.DarkTheme,
    sidebar_width=270, ## Default is 330
    busy_indicator=pn.indicators.BooleanStatus(value=True),
)

### DEPLOY APP

# Serve the Panel app
template.servable()