File size: 19,039 Bytes
de5f363 3a5451a 3544bc7 3a5451a de5f363 fab65e0 de5f363 3a5451a de5f363 3544bc7 de5f363 782ac4b de5f363 866ab34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import warnings
warnings.filterwarnings("ignore")
import io
import os
import time
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=RuntimeWarning)
import pandas as pd
import csv
import ast
from tqdm import tqdm
from operator import itemgetter
import numpy as np
import re
import datetime
import html
from joblib import Parallel, delayed
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
#plt.style.use('seaborn-paper')
import holoviews as hv
from holoviews import opts, dim
from bokeh.sampledata.les_mis import data
from bokeh.io import show
from bokeh.sampledata.les_mis import data
import panel as pn
#pn.extension(design='material')
import bokeh
from bokeh.resources import INLINE
from holoviews.operation.timeseries import rolling, rolling_outlier_std
hv.extension('bokeh')
## LOAD DATASETS
data = './data'
def read_freq_map(filename):
df = pd.read_csv(os.path.join(data,filename), sep=' ')
#df = df.head(10)
if 'Unnamed: 0' in df.columns:
df = df.drop('Unnamed: 0', axis=1)
column_0 = df.columns[0]
column_1 = df.columns[1]
freqmap = dict(zip(df[column_0], df[column_1]))
return freqmap
def read_ont_freq_dataframe(filename):
df = pd.read_csv(os.path.join(data,filename), sep=' ')
#print(df)
if 'Unnamed: 0' in df.columns:
df = df.drop('Unnamed: 0', axis=1)
column_0 = df.columns[0]
column_1 = df.columns[1]
freqmap = dict(zip(df[column_0], df[column_1]))
return freqmap
entityTypesFreqMap = read_freq_map('entityTypes.tsv')
relationTypesFreqMap = read_freq_map('relationTypes.tsv')
topDrugEntities = read_freq_map('topDrugs.tsv')
#print(topDrugEntities)
topConditionEntities = read_freq_map('topConditions.tsv')
topDrugOnts_df = pd.read_csv(os.path.join(data,'topDrugOntologies.tsv'), sep='\t')
topConditionOnts_df = pd.read_csv(os.path.join(data,'topConditionOntologies.tsv'), sep='\t')
grouping_filtered = pd.read_csv(os.path.join(data, 'drugReviewsCausal_relations.tsv'), sep=" ")
################################# CREATE CHARTS ############################
def create_type_bar_charts(entRelsButton, **kwargs):
if entRelsButton=='Entity':
dictionary = entityTypesFreqMap
return hv.Bars(dictionary, hv.Dimension('Entity Types'), 'Frequency').opts( framewise=True, xrotation=45,width=1200, height=600)
elif entRelsButton=='Relation':
dictionary = relationTypesFreqMap
return hv.Bars(dictionary, hv.Dimension('Relation Types'), 'Frequency').opts(framewise=True, xrotation=45,width=1200, height=600)
def create_ent_bar_charts(ents, **kwargs):
# Create button widgets for each label
drug_buttons = []
condition_buttons = []
for i, drg in enumerate(list(topDrugEntities.keys())):
button = pn.widgets.Button(name=drg, width=150)
## Open the associated URL in a new tab when button is clicked
button.js_on_click(code=f'window.open("https://api-vast.jrc.service.ec.europa.eu/describe/?url=http://causaldrugskg.org/causaldrugskg/resource/{drg}", "_blank");')
drug_buttons.append(button)
for i, cnd in enumerate(list(topConditionEntities.keys())):
button = pn.widgets.Button(name=cnd, width=150)
## Open the associated URL in a new tab when button is clicked
button.js_on_click(
code=f'window.open("https://api-vast.jrc.service.ec.europa.eu/describe/?url=http://causaldrugskg.org/causaldrugskg/resource/{cnd}", "_blank");')
condition_buttons.append(button)
# Stack the buttons vertically (or wrap in a GridBox for nicer layout)
drug_button_column = pn.Column(*drug_buttons, sizing_mode='stretch_width')
condition_button_column = pn.Column(*condition_buttons, sizing_mode='stretch_width')
if ents=='Drug':
dictionary = topDrugEntities
bars = hv.Bars(dictionary, hv.Dimension('Drug Entities'), 'Frequency').opts(framewise=True, xrotation=45,width=1200, height=600, fontsize={'xticks': 18, 'xlabel':18, 'ylabel':16})
# Combine everything into a Panel layout
layout = pn.Row(bars, drug_button_column)
return layout
elif ents=='Condition':
dictionary = topConditionEntities
bars = hv.Bars(dictionary, hv.Dimension('Condition Entities'), 'Frequency').opts(framewise=True, xrotation=45,width=1200, height=600, fontsize={'xticks': 18, 'xlabel':18, 'ylabel':16})
layout = pn.Row(bars, condition_button_column)
return layout
def create_ontology_bar_charts(ents, **kwargs):
if ents=='Drug':
df = pd.DataFrame({
'Drug_Ontologies': [ont.split('/')[-1] for ont in topDrugOnts_df['ontology']],
'Frequency': list(topDrugOnts_df['count']),
'url': list(topDrugOnts_df['ontology_url']) # using full keys as hyperlinks
})
drug_ontolgy_buttons = []
for i,row in df.iterrows():
button = pn.widgets.Button(name=row['Drug_Ontologies'], width=150)
## Open the associated URL in a new tab when button is clicked
url = row["url"]
button.js_on_click(
code=f'window.open("{url}", "_blank");')
drug_ontolgy_buttons.append(button)
drug_ontology_column = pn.Column(*drug_ontolgy_buttons, sizing_mode='stretch_width')
# Create bar chart with label as x-axis
bars = hv.Bars(df, kdims=['Drug_Ontologies'], vdims=['Frequency'])
bars.opts(
framewise=True,
tools=['hover'],
width=1200,
height=600,
show_legend=True,
xrotation=45,
xlabel='Drug_Ontologies',
ylabel='Frequency',
hover_tooltips=[
("Drug_Ontologies", "@Drug_Ontologies"),
("Frequency", "@Frequency")
]
)
#links_panel = pn.Column(*[pn.pane.Markdown(f"[{row.Drug_Ontologies}]({row.url})", width=400) for _, row in df.iterrows()],name='Links')
layout = pn.Row(bars, drug_ontology_column)
return layout
elif ents=='Condition':
df = pd.DataFrame({
'Condition_Ontologies': [ont.split('/')[-1] for ont in topConditionOnts_df['ontology']],
'Frequency': list(topConditionOnts_df['count']),
'url': list(topConditionOnts_df['ontology_url']) # using full keys as hyperlinks
})
condition_ontolgy_buttons = []
for i, row in df.iterrows():
button = pn.widgets.Button(name=row['Condition_Ontologies'], width=150)
## Open the associated URL in a new tab when button is clicked
url = row["url"]
button.js_on_click(
code=f'window.open("{url}", "_blank");')
condition_ontolgy_buttons.append(button)
condition_ontology_column = pn.Column(*condition_ontolgy_buttons, sizing_mode='stretch_width')
# Create bar chart with label as x-axis
bars = hv.Bars(df, kdims=['Condition_Ontologies'], vdims=['Frequency'])
bars.opts(
framewise=True,
tools=['hover'],
width=1200,
height=600,
show_legend=True,
xrotation=45,
xlabel='Condition_Ontologies',
ylabel='Frequency',
hover_tooltips=[
("Condition Ontologies", "@Condition Ontologies"),
("Frequency", "@Frequency") ])
#links_panel = pn.Column(*[pn.pane.Markdown(f"[{row.Condition_Ontologies}]({row.url})", width=400) for _, row in df.iterrows()],name='Links')
layout = pn.Row(bars, condition_ontology_column)
return layout
############################# WIDGETS & CALLBACK ###########################################
def filter_data0(df, min_value):
filtered_df = df[df['value'] >= min_value]
return filtered_df
def plot_chord_new(df,min_value):
filtered_df = filter_data0(df, min_value)
# Create a Holoviews Dataset for nodes
nodes = hv.Dataset(filtered_df, 'index')
nodes.data.head()
chord = hv.Chord(filtered_df, ['source', 'target'], ['value'])
# calculate positions for labels (simple approximation for circular layout)
num_nodes = len(nodes.data)
angles = np.linspace(0, 2 * np.pi, num_nodes, endpoint=False)
radius = 1.05 # slightly outside the chord circle
label_data = []
for i, row in nodes.data.iterrows():
angle = angles[i]
x = radius * np.cos(angle)
y = radius * np.sin(angle)
label_data.append((x, y, row['index']))
labels = hv.Labels(label_data, ['x', 'y'], 'text')
layout = chord.opts(
opts.Chord(
labels=None, # remove default labels
node_color=hv.dim('index').str(),
edge_color=hv.dim('source').str(),
cmap='Category20',
edge_cmap='Category20',
label_text_color='black',
width=800,
height=800,
tools=['hover']
)
) * labels.opts(
text_font_size='9pt',
text_align='center',
text_baseline='middle'
)
return layout
def plot_chord(df,min_value):
filtered_df = filter_data0(df, min_value)
# Create a Holoviews Dataset for nodes
nodes = hv.Dataset(filtered_df, 'index')
nodes.data.head()
chord = hv.Chord(filtered_df, ['source', 'target'], ['value'])
return chord.opts(opts.Chord(cmap='Category20', edge_cmap='Category20', label_text_color="white", node_color = hv.dim('index').str(), edge_color = hv.dim('source').str(), labels = 'index', label_text_font_size="12pt", width=800, height=800))
def chordify_triples(rel_grouping, min_val):
# Define range for minimum value slider
min_value_range = rel_grouping['value'].unique()
min_value_range.sort()
min_value_range = min_value_range[min_value_range > min_val]
# Define HoloMap with minimum value and attribute as key dimensions
holomap = hv.HoloMap({min_value: plot_chord(rel_grouping, min_value)
for min_value in min_value_range},
kdims=['Show triples with support greater than']
)
return holomap
# https://tabler-icons.io/
button1 = pn.widgets.Button(name="Introduction", button_type="warning", icon="file-info", styles={"width": "100%"})
button2 = pn.widgets.Button(name="Top Key Entities", button_type="warning", icon="chart-bar", styles={"width": "100%"})
button3 = pn.widgets.Button(name="Entity/Relation Types:", button_type="warning", icon="chart-histogram", styles={"width": "100%"})
button4 = pn.widgets.Button(name="Ontology Coverage", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
#button5 = pn.widgets.Button(name="Causal Relation Chord Diagrams", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
markdown_button_style = """
<div style="background-color: #f0f0f0; /* Matches 'warning' button type */
color: white;
font-weight: bold;
padding: 8px 12px;
border-radius: 4px;
text-align: center;
width: 100%;
">
Causal Relation Chord Diagrams
</div>
"""
#button5 = pn.pane.Markdown(markdown_button_style, width_policy="max")
button5 = pn.pane.Markdown("<div style='background-color:#f7c045; color: black; padding:8px 12px; font-weight: bold; border:1px solid #ccc; " "border-radius:8px; text-align:center; width:100%; white-space: nowrap;'>Causal Relation Chord Diagrams</div>", width=225, height=30, margin=(9, 9))
# Define child buttons
child_button_1 = pn.widgets.Button(name="Cause", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
child_button_2 = pn.widgets.Button(name="Enable", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
child_button_3 = pn.widgets.Button(name="Prevent", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
child_button_4 = pn.widgets.Button(name="Hinder", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
child_button_5 = pn.widgets.Button(name="Other", button_type="warning", icon="chart-dots-filled", styles={"width": "100%"})
# Layout: dendrogram-style using vertical + indent
tree_layout = pn.Column(
button5,
pn.Row(pn.Spacer(), # indent
pn.Column(child_button_1, child_button_2,child_button_3,child_button_4, child_button_5)),
sizing_mode='stretch_width'
)
entRelsButton = pn.widgets.RadioButtonGroup(name='### Select', options=['Entity','Relation'], value = 'Entity' )
entTypeButton = pn.widgets.RadioButtonGroup(name='### Select Entity Type', options=list(entityTypesFreqMap.keys()), value='Drug')
#relationTypeButton = pn.widgets.RadioButtonGroup(options=list(relationTypesFreqMap.keys()), value='Cause', name='Select Causal Relation')
# Define the callback function to update the HoloMap
#def update_holomap(event):
# initial_holomap.object = filter_triples(event.new)
# Create the initial HoloMap
#initial_holomap = filter_triples(relationTypeButton.value)
# Bind the callback function to the value change event of the RadioButton widget
#relationTypeButton.param.watch(update_holomap, 'value')
def show_page(page_key):
main_area.clear()
main_area.append(mapping[page_key])
button1.on_click(lambda event: show_page("Page1"))
button2.on_click(lambda event: show_page("Page2"))
button3.on_click(lambda event: show_page("Page3"))
button4.on_click(lambda event: show_page("Page4"))
#button5.on_click(lambda event: show_page("Page5"))
child_button_1.on_click(lambda event: show_page("Page5a"))
child_button_2.on_click(lambda event: show_page("Page5b"))
child_button_3.on_click(lambda event: show_page("Page5c"))
child_button_4.on_click(lambda event: show_page("Page5d"))
child_button_5.on_click(lambda event: show_page("Page5e"))
### CREATE PAGE LAYOUTS
def CreatePage1():
return pn.Column(pn.pane.Markdown("""
This is a dashboard for exploring a causal relation knowledge graph automatically extracted from a collection of drug reviews. The source data consists of around 19200 reviews from the **Drug Reviews (Druglib.com)** dataset (https://archive.ics.uci.edu/dataset/461/drug+review+dataset+druglib+com) containing patient reviews on specific drugs along with related conditions, crawled from online pharmaceutical review sites.
The causal relations represented in the KG are defined by the **MIMICause** schema (https://huggingface.co/datasets/pensieves/mimicause). The underlying CausalDrugsKG graph is available in Turtle and RDF serialization format in the European Data portal: https://data.jrc.ec.europa.eu/dataset/acebeb4e-9789-4b5c-97ec-292ce14e75d0.
---------------------------
## Top Key Entities
Bar plots representing the occurence counts of the top 30 Drug and Condition entities in the KG, where occurrence means the entity is either the Subject or Object of an extracted triple in the KG.
Clicking on the entity name in the right legend redirects to the corresponding entry in the Virtuoso Faceted Browser endpoint of the KG
## Entities/Relation Types
Bar plots of the Entity and Relation type counts.
## Ontology Coverage
Bar plots representing the linking of KG entities to standard Biomedical ontologies. Bar heights indicate the number of Drug/Condition entities linked to the corresponding ontology.
Linking is performed using the Bioportal API (https://bioportal.bioontology.org/)
Clicking on the ontology name on the right legend redirects to the ontology entry page.
## Causal Relations Chord Diagrams
Entity Chord Diagrams represent the most frequently connected entity pairs within the KG through chord illustrations, serving as both Subjects and Objects of predicative triples. The size of the chords corresponds to the support of the depicted relations.
""", width=800), align="center")
def CreatePage2():
return pn.Column(
pn.pane.Markdown("## Top 30 Entities "),
entTypeButton,
pn.bind(create_ent_bar_charts, entTypeButton),
align="center", )
def CreatePage3():
return pn.Column(
pn.pane.Markdown("## Entity/Relation Types "),
entRelsButton,
pn.bind(create_type_bar_charts, entRelsButton),
align="center",
)
def CreatePage4():
return pn.Column(
pn.pane.Markdown("## Bio-Medical Ontology Coverage "),
entTypeButton,
pn.bind(create_ontology_bar_charts, entTypeButton),
align="center", )
def CreatePage5():
return pn.Column(
pn.pane.Markdown("## Causal Relation Chord Diagrams"),
chordify_triples(grouping_filtered),
align="center", )
def CreatePage5a():
rel_grouping = grouping_filtered[grouping_filtered['causal_relation'] == 'Cause']
return pn.Column(
pn.pane.Markdown("## Relation Chord Diagram: Cause"),
chordify_triples(rel_grouping,10),
align="center", )
def CreatePage5b():
rel_grouping = grouping_filtered[grouping_filtered['causal_relation'] == 'Enable']
return pn.Column(
pn.pane.Markdown("## Relation Chord Diagram: Enable"),
chordify_triples(rel_grouping,4),
align="center", )
def CreatePage5c():
rel_grouping = grouping_filtered[grouping_filtered['causal_relation'] == 'Prevent']
return pn.Column(
pn.pane.Markdown("## Relation Chord Diagram: Prevent"),
chordify_triples(rel_grouping,50),
align="center", )
def CreatePage5d():
rel_grouping = grouping_filtered[grouping_filtered['causal_relation'] == 'Hinder']
return pn.Column(
pn.pane.Markdown("## Relation Chord Diagram: Hinder"),
chordify_triples(rel_grouping,10),
align="center", )
def CreatePage5e():
rel_grouping = grouping_filtered[grouping_filtered['causal_relation'] == 'Other']
return pn.Column(
pn.pane.Markdown("## Relation Chord Diagram: Other"),
chordify_triples(rel_grouping,10),
align="center", )
mapping = {
"Page1": CreatePage1(),
"Page2": CreatePage2(),
"Page3": CreatePage3(),
"Page4": CreatePage4(),
#"Page5": CreatePage5(),
"Page5a": CreatePage5a(),
"Page5b": CreatePage5b(),
"Page5c": CreatePage5c(),
"Page5d": CreatePage5d(),
"Page5e": CreatePage5e(),
}
#################### SIDEBAR LAYOUT ##########################
sidebar = pn.Column(pn.pane.Markdown("## Panels"), button1,button2,button3,
button4,tree_layout,
styles={"width": "100%", "padding": "15px"})
#################### MAIN AREA LAYOUT ##########################
main_area = pn.Column(mapping["Page1"], styles={"width":"100%"})
###################### APP LAYOUT ##############################
template = pn.template.BootstrapTemplate(
title=" CausalDrugsKG_Dashboard ",
sidebar=[sidebar],
main=[main_area],
#header_background="black",
#site="Charting the Landscape of Digital Health",
#theme=pn.template.DarkTheme,
sidebar_width=270, ## Default is 330
busy_indicator=pn.indicators.BooleanStatus(value=True),
)
### DEPLOY APP
# Serve the Panel app
template.servable() |