File size: 15,868 Bytes
cf367e2
663a6db
cf367e2
c0a5a18
 
 
 
 
 
663a6db
cf367e2
 
 
 
c0a5a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf367e2
c0a5a18
 
 
 
 
 
 
 
cf367e2
c0a5a18
 
 
 
 
 
 
 
 
 
 
 
 
 
cf367e2
c0a5a18
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import streamlit as st
import dotenv
import openai
from openai import OpenAI
import anthropic
from together import Together
import google.generativeai as genai
import time

dotenv.load_dotenv()

PASSWORD = os.getenv("APP_PASSWORD")

# Load API keys from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY")

# Initialize API clients
together_client = Together(api_key=TOGETHER_API_KEY)
genai.configure(api_key=GOOGLE_API_KEY)

# Set up API clients for OpenAI and Anthropic
openai.api_key = OPENAI_API_KEY
openai_client = OpenAI(
    organization="org-kUoRSK0nOw4W2nQYMVGWOt03",
    project="proj_zb6k1DdgnSEbiAEMWxSOVVu4",
)
# anthropic_client = anthropic.Client(api_key=ANTHROPIC_API_KEY)
anthropic_client = anthropic.Anthropic()

LLM_COUNCIL_MEMBERS = {
    "Smalls": [
        "openai://gpt-4o-mini",
        "together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
        "vertex://gemini-1.5-flash-001",
        "anthropic://claude-3-haiku-20240307",
    ],
    "Flagships": [
        "openai://gpt-4",
        "together://meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
        "vertex://gemini-1.5-pro-001",
        "anthropic://claude-3-5-sonnet",
    ],
}

PROVIDER_TO_AVATAR_MAP = {
    "openai://gpt-4o-mini": "",
    "anthropic://claude-3-5-sonnet": "",
    "vertex://gemini-1.5-flash-001": "",
    "together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo": "",
    "anthropic://claude-3-haiku-20240307": "",
}

AGGREGATORS = ["openai://gpt-4", "openai://gpt-3.5-turbo"]


def anthropic_streamlit_streamer(stream):
    """
    Process the Anthropic streaming response and yield content from the deltas.

    :param stream: Streaming object from Anthropic API
    :return: Yields content (text) from the streaming response.
    """
    for event in stream:
        if hasattr(event, "type"):
            # Handle content blocks
            if event.type == "content_block_delta" and hasattr(event, "delta"):
                # Extract text delta from the event
                text_delta = getattr(event.delta, "text", None)
                if text_delta:
                    yield text_delta

            # Handle message completion events (optional if needed)
            elif event.type == "message_stop":
                break  # End of message, stop streaming


def google_streamlit_streamer(stream):
    for chunk in stream:
        yield chunk.text


def together_streamlit_streamer(stream):
    for chunk in stream:
        yield chunk.choices[0].delta.content


# Helper functions for LLM council and aggregator selection
def llm_council_selector():
    selected_council = st.radio(
        "Choose a council configuration", options=list(LLM_COUNCIL_MEMBERS.keys())
    )
    return LLM_COUNCIL_MEMBERS[selected_council]


def aggregator_selector():
    return st.radio("Choose an aggregator LLM", options=AGGREGATORS)


# API calls for different providers
def get_openai_response(model_name, prompt):
    return openai_client.chat.completions.create(
        model=model_name,
        messages=[{"role": "user", "content": prompt}],
        stream=True,
    )


# https://docs.anthropic.com/en/api/messages-streaming
def get_anthropic_response(model_name, prompt):
    return anthropic_client.messages.create(
        max_tokens=1024,
        messages=[{"role": "user", "content": prompt}],
        model=model_name,
        stream=True,
    )


def get_together_response(model_name, prompt):
    return together_client.chat.completions.create(
        model=model_name,
        messages=[{"role": "user", "content": prompt}],
        stream=True,
    )


# https://ai.google.dev/gemini-api/docs/text-generation?lang=python
def get_google_response(model_name, prompt):
    model = genai.GenerativeModel(model_name)
    return model.generate_content(prompt, stream=True)


def get_llm_response(model_identifier, prompt):
    provider, model_name = model_identifier.split("://")
    if provider == "openai":
        return get_openai_response(model_name, prompt)
    elif provider == "anthropic":
        return get_anthropic_response(model_name, prompt)
    elif provider == "together":
        return get_together_response(model_name, prompt)
    elif provider == "vertex":
        return get_google_response(model_name, prompt)
    else:
        return None


# Main Streamlit App
def main():
    st.set_page_config(
        page_title="Language Model Council Sandbox", page_icon="🏛️", layout="wide"
    )

    # Custom CSS for the chat display
    center_css = """
    <style>
    h1, h2, h3, h6 { text-align: center; }
    .chat-container {
        display: flex;
        align-items: flex-start;
        margin-bottom: 10px;
    }
    .avatar {
        width: 50px;
        margin-right: 10px;
    }
    .message {
        background-color: #f1f1f1;
        padding: 10px;
        border-radius: 10px;
        width: 100%;
    }
    </style>
    """
    st.markdown(center_css, unsafe_allow_html=True)

    # App title and description
    st.title("Language Model Council Sandbox")
    st.markdown("###### Invoke a council of LLMs to generate and judge each other.")
    st.markdown("###### [ArXiv Paper](https://arxiv.org/abs/2406.08598)")

    # Authentication system
    if "authenticated" not in st.session_state:
        st.session_state.authenticated = False

    cols = st.columns([2, 1, 2])
    if not st.session_state.authenticated:
        with cols[1]:
            password = st.text_input("Password", type="password")
            if st.button("Login", use_container_width=True):
                if password == PASSWORD:
                    st.session_state.authenticated = True
                else:
                    st.error("Invalid credentials")

    if st.session_state.authenticated:
        st.success("Logged in successfully!")

        # Council and aggregator selection
        selected_models = llm_council_selector()
        st.write("Selected Models:", selected_models)
        selected_aggregator = aggregator_selector()
        st.write("Selected Aggregator:", selected_aggregator)

        # Prompt input
        prompt = st.text_area("Enter your prompt:")

        if st.button("Submit"):
            st.write("Responses:")

            # Fetching and streaming responses from each selected model
            for model in selected_models:
                # with st.chat_message(model):
                with st.chat_message(
                    model,
                    avatar=PROVIDER_TO_AVATAR_MAP[model],
                ):
                    message_placeholder = st.empty()
                    stream = get_llm_response(model, prompt)
                    if stream:
                        if model.startswith("anthropic"):
                            stream = anthropic_streamlit_streamer(stream)
                        elif model.startswith("vertex"):
                            stream = google_streamlit_streamer(stream)
                        elif model.startswith("together"):
                            stream = together_streamlit_streamer(stream)
                        message_placeholder.write_stream(stream)

            # Constructing the aggregator prompt
            aggregator_prompt = f"User prompt: {prompt}\n\n"
            aggregator_prompt += "Responses from other LLMs:\n"
            aggregator_prompt += "\n".join(
                [
                    f"{model}: {st.session_state.get(model, '')}"
                    for model in selected_models
                ]
            )
            aggregator_prompt += "\n\nPlease provide an aggregated response."

            # Fetching and streaming response from the aggregator
            st.write(f"Aggregated response from {selected_aggregator}:")
            with st.chat_message(selected_aggregator):
                message_placeholder = st.empty()
                aggregator_stream = get_llm_response(
                    selected_aggregator, aggregator_prompt
                )
                if aggregator_stream:
                    message_placeholder.write_stream(aggregator_stream)
    else:
        with cols[1]:
            st.warning("Please log in to access this app.")


if __name__ == "__main__":
    main()


# import streamlit as st
# from components import llm_council_selector

# st.title("LLM Council Selector")

# selected_models = llm_council_selector()

# if selected_models is not None:
#     st.write("Selected Models:", selected_models)
# else:
#     st.write("No models selected or component didn't return a value.")


# Choose your council.
# Pre-selected.
#    Smalls: GPT-4o-mini, llama-3.1-70b, qwen-2.0-70b
#    Flagships: GPT-4o, llama-3.1-405b, qwen-2.0-110b, gemini, claude-3.5-sonnet
#    Best: chatgpt-4o-latest, gemini-1.5-pro-exp-0827, grok-2-2024-08-13, claude-3-5-sonnet-20240620, llama-3.1-405b-instruct
# Custom:
#    Choose from a list of available models.
# All:
#    All available models.

# Choose aggregator.
# Aggregators are models proficient in synthesizing responses from other models into a single, highquality output. An effective aggregator should maintain or enhance output quality even when
# integrating inputs that are of lesser quality than its own.
# Choices:
#   - 4o-latest
#   - gemini-1.5
#   - grok-2
#   - claude-3.5-sonnet
#   - llama-3.1-405b-instruct

# Provide a prompt. (Or pre-canned prompts.)
# Paste chat history.

# Checkbox, enable judging.
#
# If checked, Judging config:
# Single sided
#   Provide criteria. (or default).
# If pairwise, choose granularity (or default).
#   Choose criteria. (or default).
#   Enable position swapping?

# Go button.
# Sections.
# 1. Model outputs.
# 2. Aggregated output.
# 3. Judging underneath each output.
#  Highlight in green, the output that was best, as determined by council.
#  Show graph breakdown of scores and justifications. (by criteria, # wins and # losses)
#  Show final overall score.
#  Highlight in red, the output that was worst, as determined by council.
# Judging section.
#   Show agreement matrix.
#   Show bar graph of self-bias.
#   Plot contrarianism vs. conviction (scatter plot)
#   Show per-judge scores.

# Calculate total cost.
# Show total tokens used.