|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from diffusers import StableDiffusionPipeline |
|
import torch |
|
from PIL import Image |
|
import io |
|
import base64 |
|
|
|
app = FastAPI() |
|
|
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("你的模型路径").to("cuda") |
|
|
|
class PromptInput(BaseModel): |
|
prompt: str |
|
|
|
@app.post("/generate") |
|
def generate_image(data: PromptInput): |
|
image = pipe(data.prompt).images[0] |
|
|
|
|
|
buffered = io.BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
return {"image_base64": img_str} |
|
|