|
from this import d |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
import gc |
|
import copy |
|
import os |
|
import random |
|
import datetime |
|
from PIL import ImageFont |
|
from utils.gradio_utils import ( |
|
character_to_dict, |
|
process_original_prompt, |
|
get_ref_character, |
|
cal_attn_mask_xl, |
|
cal_attn_indice_xl_effcient_memory, |
|
is_torch2_available, |
|
) |
|
|
|
import os |
|
os.environ['GPU_PLATFORM_ID'] = '0' |
|
os.environ['GPU_DEVICE_ID'] = '0' |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0" |
|
|
|
|
|
import os |
|
os.environ['HF_ENDPOINT']= 'https://hf-mirror.com' |
|
torch.backends.cudnn.enabled = True |
|
|
|
if is_torch2_available(): |
|
from utils.gradio_utils import AttnProcessor2_0 as AttnProcessor |
|
else: |
|
from utils.gradio_utils import AttnProcessor |
|
from huggingface_hub import hf_hub_download |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import ( |
|
StableDiffusionXLPipeline, |
|
) |
|
from diffusers.schedulers.scheduling_ddim import DDIMScheduler |
|
import torch.nn.functional as F |
|
from diffusers.utils.loading_utils import load_image |
|
from utils.utils import get_comic |
|
from utils.style_template import styles |
|
from utils.load_models_utils import get_models_dict, load_models |
|
|
|
|
|
|
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "日本漫画风" |
|
global models_dict |
|
|
|
models_dict = get_models_dict() |
|
|
|
|
|
device = ( |
|
"cuda:0" |
|
if torch.cuda.is_available() |
|
else "mps" if torch.backends.mps.is_available() else "cpu" |
|
) |
|
|
|
|
|
|
|
|
|
print(f"@@device:{device}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
local_dir = "data/" |
|
photomaker_local_path = f"{local_dir}photomaker-v1.bin" |
|
if not os.path.exists(photomaker_local_path): |
|
photomaker_path = hf_hub_download( |
|
repo_id="TencentARC/PhotoMaker", |
|
filename="photomaker-v1.bin", |
|
repo_type="model", |
|
local_dir=local_dir, |
|
) |
|
else: |
|
photomaker_path = photomaker_local_path |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
def setup_seed(seed): |
|
torch.manual_seed(seed) |
|
if device == "cuda": |
|
torch.cuda.manual_seed_all(seed) |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
torch.backends.cudnn.deterministic = True |
|
|
|
|
|
def set_text_unfinished(): |
|
return gr.update( |
|
visible=True, |
|
value="<h3>正在生成中......</h3>", |
|
) |
|
|
|
|
|
def set_text_finished(): |
|
return gr.update(visible=True, value="<h3>生成完成!</h3>") |
|
|
|
|
|
|
|
def get_image_path_list(folder_name): |
|
image_basename_list = os.listdir(folder_name) |
|
image_path_list = sorted( |
|
[os.path.join(folder_name, basename) for basename in image_basename_list] |
|
) |
|
return image_path_list |
|
|
|
|
|
|
|
class SpatialAttnProcessor2_0(torch.nn.Module): |
|
r""" |
|
Attention processor for IP-Adapater for PyTorch 2.0. |
|
Args: |
|
hidden_size (`int`): |
|
The hidden size of the attention layer. |
|
cross_attention_dim (`int`): |
|
The number of channels in the `encoder_hidden_states`. |
|
text_context_len (`int`, defaults to 77): |
|
The context length of the text features. |
|
scale (`float`, defaults to 1.0): |
|
the weight scale of image prompt. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=None, |
|
cross_attention_dim=None, |
|
id_length=4, |
|
device=device, |
|
dtype=torch.float16, |
|
): |
|
super().__init__() |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError( |
|
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." |
|
) |
|
self.device = device |
|
self.dtype = dtype |
|
self.hidden_size = hidden_size |
|
self.cross_attention_dim = cross_attention_dim |
|
self.total_length = id_length + 1 |
|
self.id_length = id_length |
|
self.id_bank = {} |
|
|
|
def __call__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
|
|
|
|
|
|
global total_count, attn_count, cur_step, indices1024, indices4096 |
|
global sa32, sa64 |
|
global write |
|
global height, width |
|
global character_dict, character_index_dict, invert_character_index_dict, cur_character, ref_indexs_dict, ref_totals, cur_character |
|
if attn_count == 0 and cur_step == 0: |
|
indices1024, indices4096 = cal_attn_indice_xl_effcient_memory( |
|
self.total_length, |
|
self.id_length, |
|
sa32, |
|
sa64, |
|
height, |
|
width, |
|
device=self.device, |
|
dtype=self.dtype, |
|
) |
|
if write: |
|
assert len(cur_character) == 1 |
|
if hidden_states.shape[1] == (height // 32) * (width // 32): |
|
indices = indices1024 |
|
else: |
|
indices = indices4096 |
|
|
|
total_batch_size, nums_token, channel = hidden_states.shape |
|
img_nums = total_batch_size // 2 |
|
hidden_states = hidden_states.reshape(-1, img_nums, nums_token, channel) |
|
|
|
if cur_character[0] not in self.id_bank: |
|
self.id_bank[cur_character[0]] = {} |
|
self.id_bank[cur_character[0]][cur_step] = [ |
|
hidden_states[:, img_ind, indices[img_ind], :] |
|
.reshape(2, -1, channel) |
|
.clone() |
|
for img_ind in range(img_nums) |
|
] |
|
hidden_states = hidden_states.reshape(-1, nums_token, channel) |
|
|
|
else: |
|
|
|
|
|
encoder_arr = [] |
|
for character in cur_character: |
|
encoder_arr = encoder_arr + [ |
|
tensor.to(self.device) |
|
for tensor in self.id_bank[character][cur_step] |
|
] |
|
|
|
if cur_step < 1: |
|
hidden_states = self.__call2__( |
|
attn, hidden_states, None, attention_mask, temb |
|
) |
|
else: |
|
random_number = random.random() |
|
if cur_step < 20: |
|
rand_num = 0.3 |
|
else: |
|
rand_num = 0.1 |
|
|
|
if random_number > rand_num: |
|
if hidden_states.shape[1] == (height // 32) * (width // 32): |
|
indices = indices1024 |
|
else: |
|
indices = indices4096 |
|
|
|
if write: |
|
total_batch_size, nums_token, channel = hidden_states.shape |
|
img_nums = total_batch_size // 2 |
|
hidden_states = hidden_states.reshape( |
|
-1, img_nums, nums_token, channel |
|
) |
|
encoder_arr = [ |
|
hidden_states[:, img_ind, indices[img_ind], :].reshape( |
|
2, -1, channel |
|
) |
|
for img_ind in range(img_nums) |
|
] |
|
for img_ind in range(img_nums): |
|
|
|
|
|
img_ind_list = [i for i in range(img_nums)] |
|
|
|
img_ind_list.remove(img_ind) |
|
|
|
|
|
|
|
|
|
encoder_hidden_states_tmp = torch.cat( |
|
[encoder_arr[img_ind] for img_ind in img_ind_list] |
|
+ [hidden_states[:, img_ind, :, :]], |
|
dim=1, |
|
) |
|
|
|
hidden_states[:, img_ind, :, :] = self.__call2__( |
|
attn, |
|
hidden_states[:, img_ind, :, :], |
|
encoder_hidden_states_tmp, |
|
None, |
|
temb, |
|
) |
|
else: |
|
_, nums_token, channel = hidden_states.shape |
|
|
|
|
|
hidden_states = hidden_states.reshape(2, -1, nums_token, channel) |
|
|
|
|
|
encoder_hidden_states_tmp = torch.cat( |
|
encoder_arr + [hidden_states[:, 0, :, :]], dim=1 |
|
) |
|
|
|
hidden_states[:, 0, :, :] = self.__call2__( |
|
attn, |
|
hidden_states[:, 0, :, :], |
|
encoder_hidden_states_tmp, |
|
None, |
|
temb, |
|
) |
|
hidden_states = hidden_states.reshape(-1, nums_token, channel) |
|
else: |
|
hidden_states = self.__call2__( |
|
attn, hidden_states, None, attention_mask, temb |
|
) |
|
attn_count += 1 |
|
if attn_count == total_count: |
|
attn_count = 0 |
|
cur_step += 1 |
|
indices1024, indices4096 = cal_attn_indice_xl_effcient_memory( |
|
self.total_length, |
|
self.id_length, |
|
sa32, |
|
sa64, |
|
height, |
|
width, |
|
device=self.device, |
|
dtype=self.dtype, |
|
) |
|
|
|
return hidden_states |
|
|
|
def __call2__( |
|
self, |
|
attn, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view( |
|
batch_size, channel, height * width |
|
).transpose(1, 2) |
|
|
|
batch_size, sequence_length, channel = hidden_states.shape |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask( |
|
attention_mask, sequence_length, batch_size |
|
) |
|
|
|
|
|
attention_mask = attention_mask.view( |
|
batch_size, attn.heads, -1, attention_mask.shape[-1] |
|
) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( |
|
1, 2 |
|
) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
|
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape( |
|
batch_size, -1, attn.heads * head_dim |
|
) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape( |
|
batch_size, channel, height, width |
|
) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
def set_attention_processor(unet, id_length, is_ipadapter=False): |
|
global attn_procs |
|
attn_procs = {} |
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = ( |
|
None |
|
if name.endswith("attn1.processor") |
|
else unet.config.cross_attention_dim |
|
) |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None: |
|
if name.startswith("up_blocks"): |
|
attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length) |
|
else: |
|
attn_procs[name] = AttnProcessor() |
|
else: |
|
if is_ipadapter: |
|
attn_procs[name] = IPAttnProcessor2_0( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1, |
|
num_tokens=4, |
|
).to(unet.device, dtype=torch.float16) |
|
else: |
|
attn_procs[name] = AttnProcessor() |
|
|
|
unet.set_attn_processor(copy.deepcopy(attn_procs)) |
|
|
|
|
|
|
|
|
|
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>" |
|
load_js = """ |
|
async () => { |
|
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js" |
|
fetch(url) |
|
.then(res => res.text()) |
|
.then(text => { |
|
const script = document.createElement('script'); |
|
script.type = "module" |
|
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); |
|
document.head.appendChild(script); |
|
}); |
|
} |
|
""" |
|
|
|
get_js_colors = """ |
|
async (canvasData) => { |
|
const canvasEl = document.getElementById("canvas-root"); |
|
return [canvasEl._data] |
|
} |
|
""" |
|
|
|
css = """ |
|
#color-bg{display:flex;justify-content: center;align-items: center;} |
|
.color-bg-item{width: 100%; height: 32px} |
|
#main_button{width:100%} |
|
<style> |
|
""" |
|
|
|
|
|
def save_single_character_weights(unet, character, description, filepath): |
|
""" |
|
保存 attention_processor 类中的 id_bank GPU Tensor 列表到指定文件中。 |
|
参数: |
|
- model: 包含 attention_processor 类实例的模型。 |
|
- filepath: 权重要保存到的文件路径。 |
|
""" |
|
weights_to_save = {} |
|
weights_to_save["description"] = description |
|
weights_to_save["character"] = character |
|
for attn_name, attn_processor in unet.attn_processors.items(): |
|
if isinstance(attn_processor, SpatialAttnProcessor2_0): |
|
|
|
weights_to_save[attn_name] = {} |
|
for step_key in attn_processor.id_bank[character].keys(): |
|
weights_to_save[attn_name][step_key] = [ |
|
tensor.cpu() |
|
for tensor in attn_processor.id_bank[character][step_key] |
|
] |
|
|
|
torch.save(weights_to_save, filepath) |
|
|
|
|
|
def load_single_character_weights(unet, filepath): |
|
""" |
|
从指定文件中加载权重到 attention_processor 类的 id_bank 中。 |
|
参数: |
|
- model: 包含 attention_processor 类实例的模型。 |
|
- filepath: 权重文件的路径。 |
|
""" |
|
|
|
weights_to_load = torch.load(filepath, map_location=torch.device("cpu")) |
|
character = weights_to_load["character"] |
|
description = weights_to_load["description"] |
|
for attn_name, attn_processor in unet.attn_processors.items(): |
|
if isinstance(attn_processor, SpatialAttnProcessor2_0): |
|
|
|
attn_processor.id_bank[character] = {} |
|
for step_key in weights_to_load[attn_name].keys(): |
|
attn_processor.id_bank[character][step_key] = [ |
|
tensor.to(unet.device) |
|
for tensor in weights_to_load[attn_name][step_key] |
|
] |
|
|
|
|
|
def save_results(unet, img_list): |
|
|
|
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") |
|
folder_name = f"results/{timestamp}" |
|
weight_folder_name = f"{folder_name}/weights" |
|
|
|
if not os.path.exists(folder_name): |
|
os.makedirs(folder_name) |
|
os.makedirs(weight_folder_name) |
|
|
|
for idx, img in enumerate(img_list): |
|
file_path = os.path.join(folder_name, f"image_{idx}.png") |
|
img.save(file_path) |
|
global character_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
title = r""" |
|
<h1 align="center" style="font-family: 'Comic Sans MS', 'Orbitron', sans-serif; color: #00ccff; text-shadow: 2px 2px 4px #000000; font-size: 48px;"> |
|
🧠✨ 我的AI研学旅记 🚀🤖 |
|
</h1> |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
description = r""" |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
article = r""" |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
version = r""" |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
global attn_count, total_count, id_length, total_length, cur_step, cur_model_type |
|
global write |
|
global sa32, sa64 |
|
global height, width |
|
attn_count = 0 |
|
total_count = 0 |
|
cur_step = 0 |
|
id_length = 4 |
|
total_length = 5 |
|
cur_model_type = "" |
|
global attn_procs, unet |
|
attn_procs = {} |
|
|
|
write = False |
|
|
|
sa32 = 0.5 |
|
sa64 = 0.5 |
|
height = 768 |
|
width = 768 |
|
|
|
global pipe |
|
global sd_model_path |
|
pipe = None |
|
sd_model_path = models_dict["Unstable"]["path"] |
|
single_files = models_dict["Unstable"]["single_files"] |
|
|
|
if single_files: |
|
pipe = StableDiffusionXLPipeline.from_single_file( |
|
sd_model_path, torch_dtype=torch.float16 |
|
) |
|
else: |
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
sd_model_path, torch_dtype=torch.float16, use_safetensors=False |
|
) |
|
print("pipE.device = ", device) |
|
pipe = pipe.to(device) |
|
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) |
|
|
|
pipe.scheduler.set_timesteps(50) |
|
pipe.enable_vae_slicing() |
|
if device != "mps": |
|
pipe.enable_model_cpu_offload() |
|
unet = pipe.unet |
|
cur_model_type = "Unstable" + "-" + "original" |
|
|
|
for name in unet.attn_processors.keys(): |
|
cross_attention_dim = ( |
|
None if name.endswith("attn1.processor") else unet.config.cross_attention_dim |
|
) |
|
if name.startswith("mid_block"): |
|
hidden_size = unet.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = unet.config.block_out_channels[block_id] |
|
if cross_attention_dim is None and (name.startswith("up_blocks")): |
|
attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length) |
|
total_count += 1 |
|
else: |
|
attn_procs[name] = AttnProcessor() |
|
print("successsfully load paired self-attention") |
|
print(f"number of the processor : {total_count}") |
|
unet.set_attn_processor(copy.deepcopy(attn_procs)) |
|
global mask1024, mask4096 |
|
mask1024, mask4096 = cal_attn_mask_xl( |
|
total_length, |
|
id_length, |
|
sa32, |
|
sa64, |
|
height, |
|
width, |
|
device=device, |
|
dtype=torch.float16, |
|
) |
|
|
|
|
|
|
|
|
|
def swap_to_gallery(images): |
|
return ( |
|
gr.update(value=images, visible=True), |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
) |
|
|
|
|
|
def upload_example_to_gallery(images, prompt, style, negative_prompt): |
|
return ( |
|
gr.update(value=images, visible=True), |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
) |
|
|
|
|
|
def remove_back_to_files(): |
|
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) |
|
|
|
|
|
def remove_tips(): |
|
return gr.update(visible=False) |
|
|
|
|
|
def apply_style_positive(style_name: str, positive: str): |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
return p.replace("{prompt}", positive) |
|
|
|
|
|
def apply_style(style_name: str, positives: list, negative: str = ""): |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
return [ |
|
p.replace("{prompt}", positive) for positive in positives |
|
], n + " " + negative |
|
|
|
|
|
def change_visiale_by_model_type(_model_type): |
|
if _model_type == "Only Using Textual Description": |
|
return ( |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
gr.update(visible=False), |
|
) |
|
elif _model_type == "Using Ref Images": |
|
return ( |
|
gr.update(visible=True), |
|
gr.update(visible=True), |
|
gr.update(visible=False), |
|
) |
|
else: |
|
raise ValueError("Invalid model type", _model_type) |
|
|
|
|
|
def load_character_files(character_files: str): |
|
if character_files == "": |
|
raise gr.Error("Please set a character file!") |
|
character_files_arr = character_files.splitlines() |
|
primarytext = [] |
|
for character_file_name in character_files_arr: |
|
character_file = torch.load( |
|
character_file_name, map_location=torch.device("cpu") |
|
) |
|
primarytext.append(character_file["character"] + character_file["description"]) |
|
return array2string(primarytext) |
|
|
|
|
|
def load_character_files_on_running(unet, character_files: str): |
|
if character_files == "": |
|
return False |
|
character_files_arr = character_files.splitlines() |
|
for character_file in character_files_arr: |
|
load_single_character_weights(unet, character_file) |
|
return True |
|
|
|
|
|
|
|
def process_generation( |
|
_sd_type, |
|
_model_type, |
|
_upload_images, |
|
_num_steps, |
|
style_name, |
|
_Ip_Adapter_Strength, |
|
_style_strength_ratio, |
|
guidance_scale, |
|
seed_, |
|
sa32_, |
|
sa64_, |
|
id_length_, |
|
general_prompt, |
|
negative_prompt, |
|
prompt_array, |
|
G_height, |
|
G_width, |
|
_comic_type, |
|
font_choice, |
|
_char_files, |
|
): |
|
if len(general_prompt.splitlines()) > 5: |
|
raise gr.Error( |
|
"Support for more than three characters is temporarily unavailable due to VRAM limitations, but this issue will be resolved soon." |
|
) |
|
_model_type = "Photomaker" if _model_type == "Using Ref Images" else "original" |
|
if _model_type == "Photomaker" and "img" not in general_prompt: |
|
raise gr.Error( |
|
'Please add the triger word " img " behind the class word you want to customize, such as: man img or woman img' |
|
) |
|
if _upload_images is None and _model_type != "original": |
|
raise gr.Error(f"Cannot find any input face image!") |
|
global sa32, sa64, id_length, total_length, attn_procs, unet, cur_model_type |
|
global write |
|
global cur_step, attn_count |
|
global height, width |
|
height = G_height |
|
width = G_width |
|
global pipe |
|
global sd_model_path, models_dict |
|
sd_model_path = models_dict[_sd_type] |
|
use_safe_tensor = True |
|
for attn_processor in pipe.unet.attn_processors.values(): |
|
if isinstance(attn_processor, SpatialAttnProcessor2_0): |
|
for values in attn_processor.id_bank.values(): |
|
del values |
|
attn_processor.id_bank = {} |
|
attn_processor.id_length = id_length |
|
attn_processor.total_length = id_length + 1 |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
if cur_model_type != _sd_type + "-" + _model_type: |
|
|
|
|
|
del pipe |
|
gc.collect() |
|
if device == "cuda": |
|
torch.cuda.empty_cache() |
|
model_info = models_dict[_sd_type] |
|
model_info["model_type"] = _model_type |
|
print("device = ", device) |
|
pipe = load_models(model_info, device=device, photomaker_path=photomaker_path) |
|
set_attention_processor(pipe.unet, id_length_, is_ipadapter=False) |
|
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) |
|
cur_model_type = _sd_type + "-" + _model_type |
|
pipe.enable_vae_slicing() |
|
if device != "mps": |
|
pipe.enable_model_cpu_offload() |
|
else: |
|
unet = pipe.unet |
|
|
|
|
|
load_chars = load_character_files_on_running(unet, character_files=_char_files) |
|
|
|
prompts = prompt_array.splitlines() |
|
global character_dict, character_index_dict, invert_character_index_dict, ref_indexs_dict, ref_totals |
|
character_dict, character_list = character_to_dict(general_prompt) |
|
|
|
start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps) |
|
if start_merge_step > 30: |
|
start_merge_step = 30 |
|
print(f"start_merge_step:{start_merge_step}") |
|
generator = torch.Generator(device=device).manual_seed(seed_) |
|
sa32, sa64 = sa32_, sa64_ |
|
id_length = id_length_ |
|
clipped_prompts = prompts[:] |
|
nc_indexs = [] |
|
for ind, prompt in enumerate(clipped_prompts): |
|
if "[NC]" in prompt: |
|
nc_indexs.append(ind) |
|
if ind < id_length: |
|
raise gr.Error( |
|
f"The first {id_length} row is id prompts, cannot use [NC]!" |
|
) |
|
prompts = [ |
|
prompt if "[NC]" not in prompt else prompt.replace("[NC]", "") |
|
for prompt in clipped_prompts |
|
] |
|
|
|
prompts = [ |
|
prompt.rpartition("#")[0] if "#" in prompt else prompt for prompt in prompts |
|
] |
|
print(prompts) |
|
|
|
( |
|
character_index_dict, |
|
invert_character_index_dict, |
|
replace_prompts, |
|
ref_indexs_dict, |
|
ref_totals, |
|
) = process_original_prompt(character_dict, prompts.copy(), id_length) |
|
if _model_type != "original": |
|
input_id_images_dict = {} |
|
if len(_upload_images) != len(character_dict.keys()): |
|
raise gr.Error( |
|
f"You upload images({len(_upload_images)}) is not equal to the number of characters({len(character_dict.keys())})!" |
|
) |
|
for ind, img in enumerate(_upload_images): |
|
input_id_images_dict[character_list[ind]] = [load_image(img)] |
|
print(character_dict) |
|
print(character_index_dict) |
|
print(invert_character_index_dict) |
|
|
|
if device == "cuda": |
|
torch.cuda.empty_cache() |
|
write = True |
|
cur_step = 0 |
|
|
|
attn_count = 0 |
|
|
|
|
|
setup_seed(seed_) |
|
total_results = [] |
|
id_images = [] |
|
results_dict = {} |
|
global cur_character |
|
|
|
if not load_chars: |
|
for character_key in character_dict.keys(): |
|
cur_character = [character_key] |
|
ref_indexs = ref_indexs_dict[character_key] |
|
print(character_key, ref_indexs) |
|
current_prompts = [replace_prompts[ref_ind] for ref_ind in ref_indexs] |
|
print(current_prompts) |
|
setup_seed(seed_) |
|
generator = torch.Generator(device=device).manual_seed(seed_) |
|
cur_step = 0 |
|
cur_positive_prompts, negative_prompt = apply_style( |
|
style_name, current_prompts, negative_prompt |
|
) |
|
if _model_type == "original": |
|
id_images = pipe( |
|
cur_positive_prompts, |
|
num_inference_steps=_num_steps, |
|
guidance_scale=guidance_scale, |
|
height=height, |
|
width=width, |
|
negative_prompt=negative_prompt, |
|
generator=generator, |
|
).images |
|
elif _model_type == "Photomaker": |
|
id_images = pipe( |
|
cur_positive_prompts, |
|
input_id_images=input_id_images_dict[character_key], |
|
num_inference_steps=_num_steps, |
|
guidance_scale=guidance_scale, |
|
start_merge_step=start_merge_step, |
|
height=height, |
|
width=width, |
|
negative_prompt=negative_prompt, |
|
generator=generator, |
|
).images |
|
else: |
|
raise NotImplementedError( |
|
"You should choice between original and Photomaker!", |
|
f"But you choice {_model_type}", |
|
) |
|
|
|
|
|
|
|
print(id_images) |
|
for ind, img in enumerate(id_images): |
|
print(ref_indexs[ind]) |
|
results_dict[ref_indexs[ind]] = img |
|
|
|
yield [results_dict[ind] for ind in results_dict.keys()] |
|
write = False |
|
if not load_chars: |
|
real_prompts_inds = [ |
|
ind for ind in range(len(prompts)) if ind not in ref_totals |
|
] |
|
else: |
|
real_prompts_inds = [ind for ind in range(len(prompts))] |
|
print(real_prompts_inds) |
|
|
|
for real_prompts_ind in real_prompts_inds: |
|
real_prompt = replace_prompts[real_prompts_ind] |
|
cur_character = get_ref_character(prompts[real_prompts_ind], character_dict) |
|
print(cur_character, real_prompt) |
|
setup_seed(seed_) |
|
if len(cur_character) > 1 and _model_type == "Photomaker": |
|
raise gr.Error( |
|
"Temporarily Not Support Multiple character in Ref Image Mode!" |
|
) |
|
generator = torch.Generator(device=device).manual_seed(seed_) |
|
cur_step = 0 |
|
real_prompt = apply_style_positive(style_name, real_prompt) |
|
if _model_type == "original": |
|
results_dict[real_prompts_ind] = pipe( |
|
real_prompt, |
|
num_inference_steps=_num_steps, |
|
guidance_scale=guidance_scale, |
|
height=height, |
|
width=width, |
|
negative_prompt=negative_prompt, |
|
generator=generator, |
|
).images[0] |
|
elif _model_type == "Photomaker": |
|
results_dict[real_prompts_ind] = pipe( |
|
real_prompt, |
|
input_id_images=( |
|
input_id_images_dict[cur_character[0]] |
|
if real_prompts_ind not in nc_indexs |
|
else input_id_images_dict[character_list[0]] |
|
), |
|
num_inference_steps=_num_steps, |
|
guidance_scale=guidance_scale, |
|
start_merge_step=start_merge_step, |
|
height=height, |
|
width=width, |
|
negative_prompt=negative_prompt, |
|
generator=generator, |
|
nc_flag=True if real_prompts_ind in nc_indexs else False, |
|
).images[0] |
|
else: |
|
raise NotImplementedError( |
|
"You should choice between original and Photomaker!", |
|
f"But you choice {_model_type}", |
|
) |
|
yield [results_dict[ind] for ind in results_dict.keys()] |
|
total_results = [results_dict[ind] for ind in range(len(prompts))] |
|
if _comic_type != "No typesetting (default)": |
|
captions = prompt_array.splitlines() |
|
captions = [caption.replace("[NC]", "") for caption in captions] |
|
captions = [ |
|
caption.split("#")[-1] if "#" in caption else caption |
|
for caption in captions |
|
] |
|
font_path = os.path.join("fonts", font_choice) |
|
font = ImageFont.truetype(font_path, int(45)) |
|
total_results = ( |
|
get_comic(total_results, _comic_type, captions=captions, font=font) |
|
+ total_results |
|
) |
|
save_results(pipe.unet, total_results) |
|
|
|
yield total_results |
|
|
|
|
|
def array2string(arr): |
|
stringtmp = "" |
|
for i, part in enumerate(arr): |
|
if i != len(arr) - 1: |
|
stringtmp += part + "\n" |
|
else: |
|
stringtmp += part |
|
|
|
return stringtmp |
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
binary_matrixes = gr.State([]) |
|
color_layout = gr.State([]) |
|
|
|
|
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
|
|
with gr.Row(): |
|
with gr.Group(elem_id="main-image"): |
|
|
|
prompts = [] |
|
colors = [] |
|
|
|
with gr.Column(visible=True) as gen_prompt_vis: |
|
with gr.Group(visible=False): |
|
sd_type = gr.Dropdown( |
|
choices=list(models_dict.keys()), |
|
value="Unstable", |
|
label="模型类型", |
|
info="选择预训练模型", |
|
) |
|
model_type = gr.Radio( |
|
["仅使用文本描述", "使用参考图像"], |
|
label="控制模式", |
|
value="仅使用文本描述", |
|
info="角色控制方式", |
|
) |
|
with gr.Group(visible=True) as control_image_input: |
|
files = gr.Files( |
|
label="拖放或选择1张或多张面部照片", |
|
file_types=["image"], |
|
) |
|
uploaded_files = gr.Gallery( |
|
label="已上传图片", |
|
visible=False, |
|
columns=5, |
|
rows=1, |
|
height=200, |
|
) |
|
with gr.Column(visible=False) as clear_button: |
|
remove_and_reupload = gr.ClearButton( |
|
value="清除并重新上传", |
|
components=files, |
|
size="sm", |
|
) |
|
|
|
general_prompt = gr.Textbox( |
|
value="", |
|
lines=2, |
|
visible=False, |
|
label="(1) 角色文本描述", |
|
interactive=True, |
|
) |
|
negative_prompt = gr.Textbox( |
|
value="", |
|
label="(2) 负面提示词", |
|
visible=False, |
|
interactive=True |
|
) |
|
style = gr.Dropdown( |
|
label="风格模板", |
|
choices=STYLE_NAMES, |
|
value=DEFAULT_STYLE_NAME, |
|
) |
|
prompt_array = gr.Textbox( |
|
lines=1, |
|
value="", |
|
visible=False, |
|
label="(3) 漫画描述(每行对应一个画格)", |
|
interactive=True, |
|
) |
|
char_path = gr.Textbox( |
|
lines=2, |
|
value="", |
|
visible=False, |
|
label="(可选) 角色文件路径", |
|
interactive=True, |
|
) |
|
char_btn = gr.Button("加载角色文件", visible=False) |
|
|
|
with gr.Group(visible=False): |
|
font_choice = gr.Dropdown( |
|
label="选择字体", |
|
choices=[ |
|
f for f in os.listdir("fonts") if f.endswith(".ttf") |
|
], |
|
value="Inkfree.ttf", |
|
info="选择最终幻灯片的字体", |
|
interactive=True, |
|
) |
|
sa32_ = gr.Slider( |
|
label="32x32自注意力层配对注意力强度", |
|
minimum=0, |
|
maximum=1.0, |
|
value=0.5, |
|
step=0.1, |
|
) |
|
sa64_ = gr.Slider( |
|
label="64x64自注意力层配对注意力强度", |
|
minimum=0, |
|
maximum=1.0, |
|
value=0.5, |
|
step=0.1, |
|
) |
|
id_length_ = gr.Slider( |
|
label="总图像中包含ID图像的数量", |
|
minimum=1, |
|
maximum=4, |
|
value=1, |
|
step=1, |
|
) |
|
with gr.Row(): |
|
seed_ = gr.Slider( |
|
label="随机种子", minimum=-1, maximum=MAX_SEED, value=0, step=1 |
|
) |
|
randomize_seed_btn = gr.Button("🎲", size="sm") |
|
num_steps = gr.Slider( |
|
label="采样步数", |
|
minimum=20, |
|
maximum=100, |
|
step=1, |
|
value=35, |
|
) |
|
G_height = gr.Slider( |
|
label="图像高度", |
|
minimum=256, |
|
maximum=1024, |
|
step=32, |
|
value=768, |
|
) |
|
G_width = gr.Slider( |
|
label="图像宽度", |
|
minimum=256, |
|
maximum=1024, |
|
step=32, |
|
value=768, |
|
) |
|
comic_type = gr.Radio( |
|
[ |
|
"默认", |
|
"四格漫画", |
|
"经典漫画风格", |
|
], |
|
value="四格漫画", |
|
label="排版风格", |
|
info="选择漫画排版风格", |
|
) |
|
with gr.Group(visible=False): |
|
guidance_scale = gr.Slider( |
|
label="引导尺度", |
|
minimum=0.1, |
|
maximum=10.0, |
|
step=0.1, |
|
value=5, |
|
) |
|
style_strength_ratio = gr.Slider( |
|
label="参考图像风格强度 (%)", |
|
minimum=15, |
|
maximum=50, |
|
step=1, |
|
value=20, |
|
visible=False, |
|
) |
|
Ip_Adapter_Strength = gr.Slider( |
|
label="IP适配器强度", |
|
minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.5, |
|
visible=False, |
|
) |
|
final_run_btn = gr.Button("开始生成!😺") |
|
|
|
with gr.Column(): |
|
out_image = gr.Gallery(label="生成结果", columns=2, height="auto") |
|
|
|
generated_information = gr.Markdown( |
|
label="生成详情", value="", visible=False |
|
) |
|
gr.Markdown(version) |
|
model_type.change( |
|
fn=change_visiale_by_model_type, |
|
inputs=model_type, |
|
outputs=[control_image_input, style_strength_ratio, Ip_Adapter_Strength], |
|
) |
|
files.upload( |
|
fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files] |
|
) |
|
remove_and_reupload.click( |
|
fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files] |
|
) |
|
char_btn.click(fn=load_character_files, inputs=char_path, outputs=[general_prompt]) |
|
|
|
randomize_seed_btn.click( |
|
fn=lambda: random.randint(-1, MAX_SEED), |
|
inputs=[], |
|
outputs=seed_, |
|
) |
|
|
|
final_run_btn.click(fn=set_text_unfinished, outputs=generated_information).then( |
|
process_generation, |
|
inputs=[ |
|
sd_type, |
|
model_type, |
|
files, |
|
num_steps, |
|
style, |
|
Ip_Adapter_Strength, |
|
style_strength_ratio, |
|
guidance_scale, |
|
seed_, |
|
sa32_, |
|
sa64_, |
|
id_length_, |
|
general_prompt, |
|
negative_prompt, |
|
prompt_array, |
|
G_height, |
|
G_width, |
|
comic_type, |
|
font_choice, |
|
char_path, |
|
], |
|
outputs=out_image, |
|
).then(fn=set_text_finished, outputs=generated_information) |
|
|
|
|
|
with gr.Accordion("😺 点击选择内容 😺", open=False, elem_id="my_accordion"): |
|
|
|
gr.Markdown("### 👦 男生视角") |
|
gr.Examples( |
|
examples=[ |
|
[ |
|
0, |
|
0.3, |
|
0.5, |
|
1, |
|
"[Bob] a man img, \n[a]a flower img\n[b]a camel img\n[c] a bridge img\n[d] a gatehouse img", |
|
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs", |
|
array2string( |
|
[ |
|
"[Bob] a portrait of a man standing alone, realistic style, natural lighting", |
|
"[a] a peach blossom flower", |
|
"[b] a Bactrian camel with a desert background", |
|
"[c] a Chinese bridge", |
|
"[d] a traditional Chinese gatehouse (ornamental archway with a plaque)", |
|
"[Bob] stands next to a blooming peach blossom flower, its petals glowing softly under the sunlight", |
|
"[Bob] stands next to the camel", |
|
"[Bob] stands on an ancient Chinese stone arch bridge over a quiet river", |
|
"[Bob] stands beneath a traditional Chinese gatehouse with red lanterns and wooden carvings", |
|
] |
|
), |
|
"日本漫画风", |
|
"Using Ref Images", |
|
|
|
768, |
|
768 |
|
], |
|
[ |
|
0, |
|
0.3, |
|
0.5, |
|
1, |
|
"[Bob] a man img, \n[a]a sunflower img\n[b]a horse img\n[c]a riverside house img\n[d]a Chinese pavilion img", |
|
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs", |
|
array2string( |
|
[ |
|
"[Bob] a portrait of a man standing alone, realistic style, natural lighting", |
|
"[a] a sunflower with large golden petals facing the sun", |
|
"[b] a brown horse standing on a grassy field", |
|
"[c] a traditional riverside house with white walls and black-tiled roof", |
|
"[d] an ancient Chinese multi-tiered pavilion with curved eaves", |
|
"[Bob] stands next to a sunflower, its bright petals glowing in the sunlight", |
|
"[Bob] stands next to the horse", |
|
"[Bob] stands beside a riverside house, reflected softly in the calm water", |
|
"[Bob] stands under a traditional Chinese pavilion with curved roofs and wooden columns", |
|
] |
|
), |
|
"日本漫画风", |
|
"Using Ref Images", |
|
|
|
768, |
|
768 |
|
], |
|
[ |
|
0, |
|
0.3, |
|
0.5, |
|
1, |
|
"[Bob] a man img, \n[a]a tree img\n[b]an alpaca img\n[c] a bridge img\n[d] a riverside house img", |
|
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs", |
|
array2string( |
|
[ |
|
"[Bob] a portrait of a man standing alone, realistic style, natural lighting", |
|
"[a] a tree ", |
|
"[b] an alpaca with fluffy white wool standing on grassland", |
|
"[c] a Chinese bridge", |
|
"[d] a traditional riverside house with white walls and black-tiled roof", |
|
"[Bob] stands next to a tree, under the sunlight", |
|
"[Bob] stands next to the alpaca", |
|
"[Bob] stands on an ancient Chinese stone arch bridge over a quiet river", |
|
"[Bob] stands beside a riverside house, its reflection shimmering in the gentle stream", |
|
] |
|
), |
|
"日本漫画风", |
|
"Using Ref Images", |
|
|
|
768, |
|
768 |
|
] |
|
], |
|
example_labels=[ |
|
"示例1:桃花,骆驼,桥,门楼", |
|
"示例2:向日葵,马,水乡,亭子", |
|
"示例3:树,羊驼,桥,水乡", |
|
], |
|
inputs=[ |
|
seed_, |
|
sa32_, |
|
sa64_, |
|
id_length_, |
|
general_prompt, |
|
negative_prompt, |
|
prompt_array, |
|
style, |
|
model_type, |
|
|
|
G_height, |
|
G_width, |
|
], |
|
) |
|
|
|
gr.Markdown("### 👧 女生视角") |
|
gr.Examples( |
|
examples=[ |
|
|
|
[ |
|
0, |
|
0.3, |
|
0.5, |
|
1, |
|
"[Alice] a woman img, \n[a]a flower img\n[b]a camel img\n[c] a bridge img\n[d] a gatehouse img", |
|
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs", |
|
array2string( |
|
[ |
|
"[Alice] a portrait of a woman standing alone, realistic style, natural lighting", |
|
"[a] a peach blossom flower", |
|
"[b] a Bactrian camel with a desert background", |
|
"[c] a Chinese bridge", |
|
"[d] a traditional Chinese gatehouse (ornamental archway with a plaque)", |
|
"[Alice] stands next to a blooming peach blossom flower, its petals glowing softly under the sunlight", |
|
"[Alice] stands beside a camel", |
|
"[Alice] stands on an ancient Chinese stone arch bridge over a quiet river", |
|
"[Alice] stands beneath a traditional Chinese gatehouse with red lanterns and wooden carvings", |
|
] |
|
), |
|
"日本漫画风", |
|
"Using Ref Images", |
|
|
|
768, |
|
768 |
|
], |
|
[ |
|
0, |
|
0.3, |
|
0.5, |
|
1, |
|
"[Alice] a woman img, \n[a]a tree img\n[b]an alpaca img\n[c] a bridge img\n[d] a gatehouse img", |
|
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs", |
|
array2string( |
|
[ |
|
"[Alice] a portrait of a woman standing alone, realistic style, natural lighting", |
|
"[a] a tree ", |
|
"[b] an alpaca with fluffy white wool standing on grassland", |
|
"[c] a Chinese bridge", |
|
"[d] a traditional Chinese gatehouse (ornamental archway with a plaque)", |
|
"[Alice] stands next to a tree, under the sunlight", |
|
"[Alice] stands next to the alpaca", |
|
"[Alice] stands on an ancient Chinese stone arch bridge over a quiet river", |
|
"[Alice] stands beneath a traditional Chinese gatehouse with red lanterns and wooden carvings", |
|
] |
|
), |
|
"日本漫画风", |
|
"Using Ref Images", |
|
|
|
768, |
|
768 |
|
], |
|
[ |
|
0, |
|
0.3, |
|
0.5, |
|
1, |
|
"[Alice] a woman img, \n[a]a sunflower img\n[b]a white goose img\n[c]a riverside house img\n[d]a Chinese pavilion img", |
|
"bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs", |
|
array2string( |
|
[ |
|
"[Alice] a portrait of a woman standing alone, realistic style, natural lighting", |
|
"[a] a sunflower with large golden petals facing the sun", |
|
"[b] a white goose with smooth feathers standing near the water", |
|
"[c] a traditional riverside house with white walls and black-tiled roof", |
|
"[d] an ancient Chinese multi-tiered pavilion with curved eaves", |
|
"[Alice] stands next to a sunflower, its bright petals glowing in the sunlight", |
|
"[Alice] stands next to the white goose, its feathers clean and shining in the sun", |
|
"[Alice] stands beside a riverside house, its reflection shimmering in the gentle stream", |
|
"[Alice] stands under a Chinese pavilion with layered roofs and carved wooden pillars", |
|
] |
|
), |
|
"日本漫画风", |
|
"Using Ref Images", |
|
|
|
768, |
|
768 |
|
] |
|
], |
|
example_labels=[ |
|
"示例1:桃花,骆驼,桥,门楼", |
|
"示例2:树,羊驼,桥,门楼", |
|
"示例3:向日葵,鹅,水乡,亭子", |
|
], |
|
inputs=[ |
|
seed_, |
|
sa32_, |
|
sa64_, |
|
id_length_, |
|
general_prompt, |
|
negative_prompt, |
|
prompt_array, |
|
style, |
|
model_type, |
|
|
|
G_height, |
|
G_width, |
|
], |
|
|
|
|
|
label="😺 请选择: 😺", |
|
) |
|
|
|
gr.Markdown(article) |
|
|
|
|
|
demo.launch(server_name="0.0.0.0", share=True) |
|
|