Spaces:
Starting
Starting
File size: 21,460 Bytes
03e7460 7829054 03e7460 7829054 03e7460 7829054 03e7460 7829054 03e7460 7829054 03e7460 7829054 03e7460 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
import numpy as np
import torch
import rasterio
import xarray as xr
import rioxarray as rxr
import cv2
from transformers import SegformerForSemanticSegmentation
from tqdm import tqdm
from scipy.ndimage import grey_dilation
import matplotlib as mpl
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from .viz_utils import alpha_composite
from loguru import logger
def resize(img, shape=None, scaling_factor=1., order='CHW'):
"""Resize an image by a given scaling factor"""
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
assert shape is None or scaling_factor == 1., "Got both shape and scaling_factor. Please provide only one of them"
# resize image
if order == 'CHW':
img = np.moveaxis(img, 0, -1) # CHW -> HWC
if shape is not None:
img = cv2.resize(img, shape[::-1], interpolation=cv2.INTER_LINEAR)
else:
img = cv2.resize(img, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_LINEAR)
# NB: cv2.resize returns a HW image if the input image is HW1: restore the C dimension
if len(img.shape) == 2:
img = img[..., None]
if order == 'CHW':
img = np.moveaxis(img, -1, 0) # HWC -> CHW
return img
def minimum_needed_padding(img_size, patch_size: int, stride: int):
"""
Compute the minimum padding needed to make an image divisible by a patch size with a given stride.
Args:
image_shape (tuple): the shape (H,W) of the image tensor
patch_size (int): the size of the patches to extract
stride (int): the stride to use when extracting patches
Returns:
tuple: the padding needed to make the image tensor divisible by the patch size with the given stride
"""
img_size = np.array(img_size)
pad = np.where(
img_size <= patch_size,
(patch_size - img_size) % patch_size, # the % patch_size is to handle the case img_size = (0,0)
(stride - (img_size - patch_size)) % stride
)
pad_t, pad_l = pad // 2
pad_b, pad_r = pad[0] - pad_t, pad[1] - pad_l
return pad_t, pad_b, pad_l, pad_r
def pad(img, pad, order='CHW'):
"""Pad an image by the given pad values, in the format (pad_t, pad_b, pad_l, pad_r)"""
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
pad_t, pad_b, pad_l, pad_r = pad
# pad image
if order == 'HWC':
padded_img = np.pad(img, ((pad_t,pad_b), (pad_l,pad_r), (0,0)), mode='constant', constant_values=0) # can also try mode='reflect'
else:
padded_img = np.pad(img, ((0,0), (pad_t,pad_b), (pad_l,pad_r)), mode='constant', constant_values=0) # can also try mode='reflect'
if isinstance(img, torch.Tensor):
padded_img = torch.tensor(padded_img)
return padded_img
def extract_patches(img, patch_size=512, stride=256, order='CHW', only_return_idx=True, include_last=True):
"""Extract patches from an image, in the format (h_start, h_end, w_start, w_end)"""
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
assert len(img.shape) == 3, f"Got image with {len(img.shape)} dimensions, expected 3 dimensions (C,H,W) or (H,W,C)"
assert img.shape[0] >= patch_size, f"Got image with height {img.shape[0]}, expected at least {patch_size}. Maybe apply padding first?"
assert img.shape[1] >= patch_size, f"Got image with width {img.shape[1]}, expected at least {patch_size}. Maybe apply padding first?"
# Get image height and width
if order == 'HWC':
H, W = img.shape[:2]
else:
H, W = img.shape[1:]
# Compute the number of "proper" patches in each dimension
n_patches_H = (H - patch_size) // stride + 1
n_patches_W = (W - patch_size) // stride + 1
# Extract patches indices
patches_idx = []
for i in range(n_patches_H): # iterate over height
for j in range(n_patches_W): # iterate over width
# Get the current patch indices
patches_idx.append((i*stride, i*stride+patch_size, j*stride, j*stride+patch_size)) # (top, bottom, left, right)
# Include leftmost and lowermost patch if needed
if include_last:
if j == n_patches_W-1 and j*stride+patch_size < W:
patches_idx.append((i*stride, i*stride+patch_size, W-patch_size, W))
if i == n_patches_H-1 and i*stride+patch_size < H:
patches_idx.append((H-patch_size, H, j*stride, j*stride+patch_size))
if i == n_patches_H-1 and j == n_patches_W-1 and i*stride+patch_size < H and j*stride+patch_size < W:
patches_idx.append((H-patch_size, H, W-patch_size, W))
if only_return_idx:
return patches_idx
else:
# Extract patches
patches = []
for t,b,l,r in patches_idx:
if order == 'HWC':
patch = img[t:b, l:r, :]
else:
patch = img[:, t:b, l:r]
patches.append(patch)
return patches, patches_idx
def segment_batch(batch, model):
# perform prediction
with torch.no_grad():
out = model(batch) # (n_patches, 1, H, W) logits
if isinstance(model, SegformerForSemanticSegmentation):
out = upsample(out.logits, size=batch.shape[-2:])
# apply sigmoid
out = torch.sigmoid(out) # logits -> confidence scores
return out
def upsample(x, size):
"""Upsample a 3D/4D/5D tensor"""
return torch.nn.functional.interpolate(x, size=size, mode='bilinear', align_corners=False)
def merge_patches(patches, patches_idx, rotate=False, canvas_shape=None, order='CHW'): # TODO
"""Merge patches into a single image"""
assert order in ['HWC', 'CHW'], f"Got unknown order '{order}', expected one of ['HWC','CHW']"
if rotate:
axes_to_rotate = (0,1) if order == 'HWC' else (1,2)
patches = [np.rot90(p, -i, axes=axes_to_rotate) for i,p in enumerate(patches)]
else:
assert len(patches) == len(patches_idx), f"Got {len(patches)} patches and {len(patches_idx)} indexes"
# if canvas_shape is None, infer it from patches_idx
if canvas_shape is None:
patches_idx_zipped = list(zip(*patches_idx))
canvas_H = max(patches_idx_zipped[1])
canvas_W = max(patches_idx_zipped[3])
else:
canvas_H, canvas_W = canvas_shape
# initialize canvas
dtype = patches[0].dtype
if order == 'HWC':
canvas_C = patches[0].shape[-1]
canvas = np.zeros((canvas_H, canvas_W, canvas_C), dtype=dtype) # HWC
n_overlapping_patches = np.zeros((canvas_H, canvas_W, 1))
else:
canvas_C = patches[0].shape[0]
canvas = np.zeros((canvas_C, canvas_H, canvas_W, ), dtype=dtype) # CHW
n_overlapping_patches = np.zeros((1, canvas_H, canvas_W))
# merge patches
for p, (t,b,l,r) in zip(patches, patches_idx):
if order == 'HWC':
canvas[t:b, l:r, :] += p
n_overlapping_patches[t:b, l:r, 0] += 1
else:
canvas[:, t:b, l:r] += p
n_overlapping_patches[0, t:b, l:r] += 1
# compute average
canvas = np.divide(canvas, n_overlapping_patches, where=(n_overlapping_patches != 0))
return canvas
def segment(img, model, patch_size=512, stride=256, scaling_factor=1., rotate=False, device=None, batch_size=16, verbose=False):
"""Segment an RGB image by using a segmentation model. Returns a probability
map (and performance metrics, if requested)"""
# some checks
assert isinstance(img, np.ndarray), f"Input must be a numpy array. Got {type(img)}"
assert img.shape[0] in [3,4], f"Input image must be formatted as CHW, with C = 3,4. Got a shape of {img.shape}"
assert img.dtype == np.uint8, f"Input image must be a numpy array with dtype np.uint8. Got {img.dtype}"
# prepare model for evaluation
model = model.to(device)
model.eval()
# prepare alpha channel
original_shape = img.shape
if img.shape[0] == 3:
# create dummy alpha channel
alpha = np.full(original_shape[1:], 255, dtype=np.uint8)
else:
# extract alpha channel
img, alpha = img[:3], img[3]
# resize image
img = resize(img, scaling_factor=scaling_factor)
# pad image
pad_t, pad_b, pad_l, pad_r = minimum_needed_padding(img.shape[1:], patch_size, stride)
padded_img = pad(img, pad=(pad_t, pad_b, pad_l, pad_r))
padded_shape = padded_img.shape
# extract patches indexes
patches_idx = extract_patches(padded_img, patch_size=patch_size, stride=stride)
### segment
masks = []
masks_idx = []
batch = []
for i, p_idx in enumerate(tqdm(patches_idx, disable=not verbose, desc="Predicting...", total=len(patches_idx))):
t, b, l, r = p_idx
# extract patch
patch = padded_img[:, t:b, l:r]
# consider patch only if it is valid (i.e. not all black or all white)
if np.any(patch != 0) and np.any(patch != 255):
# convert patch to torch.tensor with float32 values in [0,1] (as required by torch)
patch = torch.tensor(patch).float() / 255.
# normalize patch with ImageNet mean and std
patch = (patch - torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)) / torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
# add patch to batch
batch.append(patch)
masks_idx.append(p_idx)
# (optional) for each patch extracted, consider also its rotated versions
if rotate:
for rot in range(1,4):
patch = torch.rot90(patch, rot, dims=[1,2])
batch.append(patch)
masks_idx.append(p_idx)
# if the batch is full, perform prediction
if len(batch) >= batch_size or i == len(patches_idx)-1:
# move batch to GPU
batch = torch.stack(batch).to(device)
# perform prediction
out = segment_batch(batch, model)
# append predictions to masks
masks.append(out.cpu().numpy())
# reset batch
batch = []
# concatenate predictions
masks = np.concatenate(masks) # (n_patches, 1, H, W)
# merge patches
mask = merge_patches(masks, masks_idx, rotate=rotate, canvas_shape=padded_shape[1:]) # (1, H, W)
# undo padding
mask = mask[:, pad_t:padded_shape[1]-pad_b, pad_l:padded_shape[2]-pad_r]
# resize mask to original shape
mask = resize(mask, shape=original_shape[1:])
# apply alpha channel, i.e. set to -1 the pixels where alpha is 0
mask = np.where(alpha == 0, -1, mask)
return mask.squeeze()
def sliding_window_avg_pooling(img, window, granularity, alpha=None, min_nonblank_pixels=0., order="HWC", normalize=False, return_min_max=False, verbose=False):
assert isinstance(img, np.ndarray), f'Input image must be a numpy array. Got {type(img)}'
if order == "HWC":
assert img.shape[2] == 1, f'Input image must be formatted as HWC, with C = 1. Got a shape of {img.shape}'
elif order == "CHW":
assert img.shape[0] == 1, f'Input image must be formatted as CHW, with C = 1. Got a shape of {img.shape}'
# check if alpha channel was given, and cast it to np.float32 with values in [0,1]
if alpha is not None:
assert img.shape == alpha.shape, f'The shape of input image {img.shape} and alpha channel {alpha.shape} do not match'
if alpha.dtype == np.uint8:
alpha = (alpha / 255).astype(np.float32)
elif alpha.dtype == bool:
alpha = alpha.astype(np.float32)
else:
alpha = np.ones_like(img, dtype=np.float32)
# compute threshold
thresh = min_nonblank_pixels * window**2
# extract patches idxs
patches_idx = extract_patches(img, patch_size=window, stride=granularity, order=order, only_return_idx=True)
# initialize canvas
canvas = np.zeros_like(img, dtype=np.float32)
n_overlapping_patches = np.zeros_like(img, dtype=np.float32)
# cycle through patches idxs
for t,b,l,r in tqdm(patches_idx, disable=not verbose):
p_a = alpha[t:b,l:r]
n_valid_pixels = p_a.sum()
# keep only if it has more than min_nonblank_pixels
if n_valid_pixels <= thresh:
continue
# compute average patch value (i.e. density inside the patch)
p = img[t:b,l:r]
p_density = (p * p_a).sum() / n_valid_pixels
# add to canvas
canvas[t:b,l:r] += p_density
n_overlapping_patches[t:b,l:r] += 1
# compute average density
density_map = np.divide(canvas, n_overlapping_patches, where=(n_overlapping_patches != 0))
# apply alpha
density_map = density_map * alpha
if normalize:
# [0,1]-normalize
density_map_min = density_map.min()
density_map_max = density_map.max()
density_map = (density_map - density_map_min) / (density_map_max - density_map_min)
if return_min_max:
return density_map, density_map_min, density_map_max
return density_map
def compute_vndvi(
raster: np.ndarray,
mask: np.ndarray,
dilate_rows=True,
window_size=360,
granularity=45,
):
assert isinstance(raster, np.ndarray)
assert isinstance(mask, np.ndarray)
assert len(raster.shape) == 3 # CHW
assert len(mask.shape) == 2 # HW
assert raster.shape[0] in [3,4] # RGB or RGBA
# CHW -> HWC
raster = raster.transpose(1,2,0)
# Extract channels
_raster = raster.astype(np.float32) / 255 # convert to float32 in [0,1]
R, G, B = _raster[:,:,0], _raster[:,:,1], _raster[:,:,2]
# To avoid division by 0 due to negative power, we replace 0 with 1 in R and B channels
R = np.where(R == 0, 1, R)
B = np.where(B == 0, 1, B)
# Mask has values: 0=interrows, 255=rows, 1=nodata
# Get mask for the rows and interrows
mask_rows = (mask == 255)
mask_interrows = (mask == 0)
mask_valid = mask_rows | mask_interrows
# Compute vndvi
vndvi = 0.5268 * (R**(-0.1294) * G**(0.3389) * B**(-0.3118))
# Clip values to [0,1]
vndvi = np.clip(vndvi, 0, 1)
# Compute 10th and 90th percentile on whole vineyard vndvi heatmap
vndvi_perc10, vndvi_perc90 = np.percentile(vndvi[mask_valid], [10,90])
# Clip values between 10th and 90th percentile
vndvi_clipped = np.clip(vndvi, vndvi_perc10, vndvi_perc90)
# Perform sliding window average pooling to smooth the heatmap
# NB: the window takes into account only the rows
vndvi_rows_clipped_pooled = sliding_window_avg_pooling(
np.where(mask_rows, vndvi_clipped, 0)[..., None],
window = int(window_size / 4),
granularity = granularity,
alpha = mask_rows[..., None],
min_nonblank_pixels = 0.0,
verbose=True,
)
# Same, but for interrows
vndvi_interrows_clipped_pooled = sliding_window_avg_pooling(
np.where(mask_interrows, vndvi_clipped, 0)[..., None],
window = int(window_size / 4),
granularity = granularity,
alpha = mask_interrows[..., None],
min_nonblank_pixels = 0.0,
verbose=True,
)
# Apply dilation to rows mask
dil_factor = int(window_size / 60)
mask_rows_dilated = grey_dilation(mask_rows, size=(dil_factor, dil_factor))
vndvi_rows_clipped_pooled_dilated = grey_dilation(vndvi_rows_clipped_pooled, size=(dil_factor, dil_factor, 1))
# For visualization purposes, normalize with vndvi_perc10 and
# vndvi_perc90 (because we want vndvi_perc10 to be the first color of
# the colormap and vndvi_perc90 to be the last)
vndvi_rows_clipped_pooled_normalized = (vndvi_rows_clipped_pooled - vndvi_perc10) / (vndvi_perc90 - vndvi_perc10)
vndvi_rows_clipped_pooled_dilated_normalized = (vndvi_rows_clipped_pooled_dilated - vndvi_perc10) / (vndvi_perc90 - vndvi_perc10)
vndvi_interrows_clipped_pooled_normalized = (vndvi_interrows_clipped_pooled - vndvi_perc10) / (vndvi_perc90 - vndvi_perc10)
# for visualization
vndvi_rows_img = alpha_composite(
raster,
vndvi_rows_clipped_pooled_dilated_normalized if dilate_rows else vndvi_rows_clipped_pooled_normalized,
opacity = 1.0,
colormap = 'RdYlGn',
alpha_image = np.zeros_like(raster[:,:,[0]]),
alpha_mask = mask_rows_dilated[...,None] if dilate_rows else mask_rows[...,None],
) # HW4 RGBA
vndvi_interrows_img = alpha_composite(
raster,
vndvi_interrows_clipped_pooled_normalized,
opacity = 1.0,
colormap = 'RdYlGn',
alpha_image = np.zeros_like(raster[:,:,[0]]),
alpha_mask = mask_interrows[...,None],
) # HW4 RGBA
# add colorbar
# fig_rows, ax = plt.subplots(1, 1, figsize=(10, 10))
# divider = make_axes_locatable(ax)
# cax = divider.append_axes('right', size='5%', pad=0.15)
# ax.imshow(vndvi_rows_img)
# fig_rows.colorbar(
# mappable = mpl.cm.ScalarMappable(
# norm = mpl.colors.Normalize(
# vmin = vndvi_perc10,
# vmax = vndvi_perc90),
# cmap = 'RdYlGn'),
# cax = cax,
# orientation = 'vertical',
# label = 'vNDVI',
# shrink = 1)
# fig_interrows, ax = plt.subplots(1, 1, figsize=(10, 10))
# divider = make_axes_locatable(ax)
# cax = divider.append_axes('right', size='5%', pad=0.15)
# ax.imshow(vndvi_interrows_img)
# fig_interrows.colorbar(
# mappable = mpl.cm.ScalarMappable(
# norm = mpl.colors.Normalize(
# vmin = vndvi_perc10,
# vmax = vndvi_perc90),
# cmap = 'RdYlGn'),
# cax = cax,
# orientation = 'vertical',
# label = 'vNDVI',
# shrink = 1)
# return fig_rows, fig_interrows
return vndvi_rows_img, vndvi_interrows_img
def compute_vdi(
raster: np.ndarray,
mask: np.ndarray,
window_size=360,
granularity=40,
):
# CHW -> HWC
raster = raster.transpose(1,2,0)
# Mask has values: 0=interrows, 255=rows, 1=nodata
# Get mask for the rows and interrows
mask_rows = (mask == 255)
mask_interrows = (mask == 0)
mask_valid = mask_rows | mask_interrows
# compute vdi
vdi, vdi_min, vdi_max = sliding_window_avg_pooling(
mask_rows[...,None],
window=window_size,
granularity=granularity,
alpha=mask_valid[...,None],
min_nonblank_pixels=0.9,
normalize=True,
return_min_max=True,
verbose=True,
)
# for visualization
vdi_img = alpha_composite(
raster,
vdi,
opacity = 1,
colormap = 'jet_r',
alpha_image = mask_valid[...,None],
alpha_mask = mask_valid[...,None],
)
# add colorbar
# fig, ax = plt.subplots(1, 1, figsize=(10, 10))
# divider = make_axes_locatable(ax)
# cax = divider.append_axes('right', size='5%', pad=0.15)
# ax.imshow(vdi_img)
# fig.colorbar(
# mappable = mpl.cm.ScalarMappable(
# norm = mpl.colors.Normalize(
# vmin = vdi_min,
# vmax = vdi_max),
# cmap = 'jet_r'),
# cax = cax,
# orientation = 'vertical',
# label = 'VDI',
# shrink = 1)
# return fig
return vdi_img
def compute_mask(
raster: np.ndarray,
model: torch.nn.Module,
patch_size=512,
stride=256,
scaling_factor=None,
rotate=False,
batch_size=16
):
assert isinstance(raster, np.ndarray), f'Input raster must be a numpy array. Got {type(raster)}'
assert len(raster.shape) == 3, f'Input raster must have 3 dimensions (bands, rows, cols). Got shape {raster.shape}'
assert raster.shape[0] in [3,4], f'Input raster must have 3 bands (RGB) or 4 bands (RGBA). Got {raster.shape[0]} bands'
assert isinstance(model, torch.nn.Module), 'Model must be a torch.nn.Module'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Infer GSD
#gsd = abs(raster.rio.transform()[0]) # ground sampling distance (NB: valid only if image is a GeoTIFF)
# Growseg works best on orthoimages with gsd in [1, 1.7] cm/px. You may want to
# specify a scaling factor different from 1 if your image has a different gsd.
# E.g.: SCALING_FACTOR = gsd / 0.015
# logger.info(f'Image GSD: {gsd*100:.2f} cm/px')
# scaling_factor = scaling_factor or (gsd / 0.015)
scaling_factor = scaling_factor or 1
logger.info(f'Applying scaling factor: {scaling_factor:.2f}')
# segment
logger.info('Segmenting image...')
score_map = segment(
raster,
model,
patch_size=patch_size,
stride=stride,
scaling_factor=scaling_factor,
rotate=rotate,
device=device,
batch_size=batch_size,
verbose=True
) # mask is a HxW float32 array in [0, 1]
# apply threshold on confidence scores
alpha = (score_map == -1)
mask = (score_map > 0.5)
# convert to uint8
mask = (mask * 255).astype(np.uint8)
# set nodata pixels to 1
mask[alpha] = 1
return mask |