Spaces:
Sleeping
Sleeping
File size: 11,339 Bytes
2b48bef 6d412a7 2b48bef 6d412a7 2b48bef 6d412a7 2b48bef 6d412a7 2b48bef 99cfc6e 2b48bef 6d412a7 2b48bef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
"""
Copyright $today.year LY Corporation
LY Corporation licenses this file to you under the Apache License,
version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at:
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.
"""
import os
import subprocess
import ffmpeg
import gradio as gr
import pandas as pd
import torch
from lighthouse.models import *
from tqdm import tqdm
# use GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_NAMES = ["cg_detr", "moment_detr", "eatr", "qd_detr", "tr_detr", "uvcom"]
FEATURES = ["clip"]
TOPK_MOMENT = 5
TOPK_HIGHLIGHT = 5
"""
Helper functions
"""
def load_pretrained_weights():
file_urls = []
for model_name in MODEL_NAMES:
for feature in FEATURES:
file_urls.append(
"https://zenodo.org/records/13960580/files/{}_{}_qvhighlight.ckpt".format(
feature, model_name
)
)
for file_url in tqdm(file_urls):
if not os.path.exists("weights/" + os.path.basename(file_url)):
command = "wget -P weights/ {}".format(file_url)
subprocess.run(command, shell=True)
return file_urls
def flatten(array2d):
list1d = []
for elem in array2d:
list1d += elem
return list1d
"""
Model initialization
"""
load_pretrained_weights()
model = CGDETRPredictor(
"weights/clip_cg_detr_qvhighlight.ckpt",
device=device,
feature_name="clip",
slowfast_path=None,
pann_path=None,
)
loaded_video = None
loaded_video_path = None
js_codes = [
"""() => {{
let moment_text = document.getElementById('result_{}').textContent;
var replaced_text = moment_text.replace(/moment..../, '').replace(/\ Score.*/, '');
let start_end = JSON.parse(replaced_text);
document.getElementsByTagName("video")[0].currentTime = start_end[0];
document.getElementsByTagName("video")[0].play();
}}""".format(i)
for i in range(TOPK_MOMENT)
]
"""
Gradio functions
"""
def video_upload(video):
global loaded_video, loaded_video_path
if video is None:
loaded_video = None
loaded_video_path = video
yield gr.update(value="Removed the video", visible=True)
else:
yield gr.update(
value="Processing the video. Wait for a minute...", visible=True
)
loaded_video = model.encode_video(video)
loaded_video_path = video
yield gr.update(value="Finished video processing!", visible=True)
def model_load(radio, video):
global loaded_video, loaded_video_path
if radio is not None:
loading_msg = "Loading new model. Wait for a minute..."
yield (
gr.update(value=loading_msg, visible=True),
gr.update(value=loading_msg, visible=True),
)
global model
feature, model_name = radio.split("+")
feature, model_name = feature.strip(), model_name.strip()
if model_name == "moment_detr":
model_class = MomentDETRPredictor
elif model_name == "qd_detr":
model_class = QDDETRPredictor
elif model_name == "eatr":
model_class = EaTRPredictor
elif model_name == "tr_detr":
model_class = TRDETRPredictor
elif model_name == "uvcom":
model_class = UVCOMPredictor
elif model_name == "cg_detr":
model_class = CGDETRPredictor
else:
raise gr.Error("Select from the models")
model = model_class(
"weights/{}_{}_qvhighlight.ckpt".format(feature, model_name),
device=device,
feature_name="{}".format(feature),
)
load_finished_msg = "Model loaded: {}".format(radio)
encode_process_msg = (
"Processing the video. Wait for a minute..." if video is not None else ""
)
yield (
gr.update(value=load_finished_msg, visible=True),
gr.update(value=encode_process_msg, visible=True),
)
if video is not None:
loaded_video = model.encode_video(video)
loaded_video_path = video
encode_finished_msg = "Finished video processing!"
yield (
gr.update(value=load_finished_msg, visible=True),
gr.update(value=encode_finished_msg, visible=True),
)
else:
loaded_video = None
loaded_video_path = None
def predict(textbox, line, gallery):
global loaded_video, loaded_video_path
if loaded_video is None:
raise gr.Error(
"Upload the video before pushing the `Retrieve moment & highlight detection` button."
)
else:
prediction = model.predict(textbox, loaded_video)
mr_results = prediction["pred_relevant_windows"]
hl_results = prediction["pred_saliency_scores"]
buttons = []
for i, pred in enumerate(mr_results[:TOPK_MOMENT]):
buttons.append(
gr.Button(
value="moment {}: [{}, {}] Score: {}".format(
i + 1, pred[0], pred[1], pred[2]
),
visible=True,
)
)
# Visualize the HD score
seconds = [model._vision_encoder._clip_len * i for i in range(len(hl_results))]
hl_data = pd.DataFrame({"second": seconds, "saliency_score": hl_results})
min_val, max_val = min(hl_results), max(hl_results) + 1
min_x, max_x = min(seconds), max(seconds)
line = gr.LinePlot(
value=hl_data,
x="second",
y="saliency_score",
visible=True,
y_lim=[min_val, max_val],
x_lim=[min_x, max_x],
)
# Show highlight frames
n_largest_df = hl_data.nlargest(columns="saliency_score", n=TOPK_HIGHLIGHT)
highlighted_seconds = n_largest_df.second.tolist()
highlighted_scores = n_largest_df.saliency_score.tolist()
output_image_paths = []
for i, (second, score) in enumerate(
zip(highlighted_seconds, highlighted_scores)
):
output_path = "highlight_frames/highlight_{}.png".format(i)
(
ffmpeg.input(loaded_video_path, ss=second)
.output(output_path, vframes=1, qscale=2)
.global_args("-loglevel", "quiet", "-y")
.run()
)
output_image_paths.append(
(output_path, "Highlight: {} - score: {:.02f}".format(i + 1, score))
)
gallery = gr.Gallery(
value=output_image_paths,
label="gradio",
columns=5,
show_download_button=True,
visible=True,
)
return buttons + [line, gallery]
def main():
title = """# Moment Retrieval & Highlight Detection Demo"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(title)
with gr.Row():
with gr.Column():
with gr.Group():
gr.Markdown("## Model selection")
radio_list = flatten(
[
[
"{} + {}".format(feature, model_name)
for model_name in MODEL_NAMES
]
for feature in FEATURES
]
)
radio = gr.Radio(
radio_list,
label="models",
value="clip + cg_detr",
info="Which model do you want to use? More models is available in the original repository. Please refer to https://github.com/line/lighthouse for more details.",
)
load_status_text = gr.Textbox(
label="Model load status", value="Model loaded: clip + cg_detr"
)
with gr.Group():
gr.Markdown("## Video and query")
video_input = gr.Video(elem_id="video", height=600)
output = gr.Textbox(label="Video processing progress")
query_input = gr.Textbox(label="query")
button = gr.Button(
"Retrieve moment & highlight detection", variant="primary"
)
with gr.Column():
with gr.Group():
gr.Markdown("## Retrieved moments")
button_1 = gr.Button(
value="moment 1", visible=False, elem_id="result_0"
)
button_2 = gr.Button(
value="moment 2", visible=False, elem_id="result_1"
)
button_3 = gr.Button(
value="moment 3", visible=False, elem_id="result_2"
)
button_4 = gr.Button(
value="moment 4", visible=False, elem_id="result_3"
)
button_5 = gr.Button(
value="moment 5", visible=False, elem_id="result_4"
)
button_1.click(None, None, None, js=js_codes[0])
button_2.click(None, None, None, js=js_codes[1])
button_3.click(None, None, None, js=js_codes[2])
button_4.click(None, None, None, js=js_codes[3])
button_5.click(None, None, None, js=js_codes[4])
# dummy
with gr.Group():
gr.Markdown("## Saliency score")
line = gr.LinePlot(
value=pd.DataFrame({"x": [], "y": []}),
x="x",
y="y",
visible=False,
)
gr.Markdown("### Highlighted frames")
gallery = gr.Gallery(
value=[], label="highlight", columns=5, visible=False
)
video_input.change(video_upload, inputs=[video_input], outputs=output)
radio.select(
model_load,
inputs=[radio, video_input],
outputs=[load_status_text, output],
)
button.click(
predict,
inputs=[query_input, line, gallery],
outputs=[
button_1,
button_2,
button_3,
button_4,
button_5,
line,
gallery,
],
)
demo.launch(share=True, server_name="0.0.0.0")
if __name__ == "__main__":
main()
|