from __future__ import annotations import pathlib import re import time import types from collections import OrderedDict import numpy as np import torch import torch.nn.functional as F from basics.base_module import CategorizedModule from utils.hparams import hparams from utils.training_utils import get_latest_checkpoint_path def tensors_to_scalars(metrics): new_metrics = {} for k, v in metrics.items(): if isinstance(v, torch.Tensor): v = v.item() if type(v) is dict: v = tensors_to_scalars(v) new_metrics[k] = v return new_metrics def collate_nd(values, pad_value=0, max_len=None): """ Pad a list of Nd tensors on their first dimension and stack them into a (N+1)d tensor. """ size = ((max(v.size(0) for v in values) if max_len is None else max_len), *values[0].shape[1:]) res = torch.full((len(values), *size), fill_value=pad_value, dtype=values[0].dtype, device=values[0].device) for i, v in enumerate(values): res[i, :len(v), ...] = v return res def random_continuous_masks(*shape: int, dim: int, device: str | torch.device = 'cpu'): start, end = torch.sort( torch.randint( low=0, high=shape[dim] + 1, size=(*shape[:dim], 2, *((1,) * (len(shape) - dim - 1))), device=device ).expand(*((-1,) * (dim + 1)), *shape[dim + 1:]), dim=dim )[0].split(1, dim=dim) idx = torch.arange( 0, shape[dim], dtype=torch.long, device=device ).reshape(*((1,) * dim), shape[dim], *((1,) * (len(shape) - dim - 1))) masks = (idx >= start) & (idx < end) return masks def _is_batch_full(batch, num_frames, max_batch_frames, max_batch_size): if len(batch) == 0: return 0 if len(batch) == max_batch_size: return 1 if num_frames > max_batch_frames: return 1 return 0 def batch_by_size( indices, num_frames_fn, max_batch_frames=80000, max_batch_size=48, required_batch_size_multiple=1 ): """ Yield mini-batches of indices bucketed by size. Batches may contain sequences of different lengths. Args: indices (List[int]): ordered list of dataset indices num_frames_fn (callable): function that returns the number of frames at a given index max_batch_frames (int, optional): max number of frames in each batch (default: 80000). max_batch_size (int, optional): max number of sentences in each batch (default: 48). required_batch_size_multiple: require the batch size to be multiple of a given number """ bsz_mult = required_batch_size_multiple if isinstance(indices, types.GeneratorType): indices = np.fromiter(indices, dtype=np.int64, count=-1) sample_len = 0 sample_lens = [] batch = [] batches = [] for i in range(len(indices)): idx = indices[i] num_frames = num_frames_fn(idx) sample_lens.append(num_frames) sample_len = max(sample_len, num_frames) assert sample_len <= max_batch_frames, ( "sentence at index {} of size {} exceeds max_batch_samples " "limit of {}!".format(idx, sample_len, max_batch_frames) ) num_frames = (len(batch) + 1) * sample_len if _is_batch_full(batch, num_frames, max_batch_frames, max_batch_size): mod_len = max( bsz_mult * (len(batch) // bsz_mult), len(batch) % bsz_mult, ) batches.append(batch[:mod_len]) batch = batch[mod_len:] sample_lens = sample_lens[mod_len:] sample_len = max(sample_lens) if len(sample_lens) > 0 else 0 batch.append(idx) if len(batch) > 0: batches.append(batch) return batches def make_positions(tensor, padding_idx): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx def softmax(x, dim): return F.softmax(x, dim=dim, dtype=torch.float32) def unpack_dict_to_list(samples): samples_ = [] bsz = samples.get('outputs').size(0) for i in range(bsz): res = {} for k, v in samples.items(): try: res[k] = v[i] except: pass samples_.append(res) return samples_ def filter_kwargs(dict_to_filter, kwarg_obj): import inspect sig = inspect.signature(kwarg_obj) if any(param.kind == param.VAR_KEYWORD for param in sig.parameters.values()): # the signature contains definitions like **kwargs, so there is no need to filter return dict_to_filter.copy() filter_keys = [ param.name for param in sig.parameters.values() if param.kind == param.POSITIONAL_OR_KEYWORD or param.kind == param.KEYWORD_ONLY ] filtered_dict = {filter_key: dict_to_filter[filter_key] for filter_key in filter_keys if filter_key in dict_to_filter} return filtered_dict def load_ckpt( cur_model, ckpt_base_dir, ckpt_steps=None, prefix_in_ckpt='model', ignored_prefixes=None, key_in_ckpt='state_dict', strict=True, device='cpu' ): if ignored_prefixes is None: # NOTICE: this is for compatibility with old checkpoints which have duplicate txt_embed layer in them. ignored_prefixes = ['model.fs2.encoder.embed_tokens'] if not isinstance(ckpt_base_dir, pathlib.Path): ckpt_base_dir = pathlib.Path(ckpt_base_dir) if ckpt_base_dir.is_file(): checkpoint_path = [ckpt_base_dir] elif ckpt_steps is not None: checkpoint_path = [ckpt_base_dir / f'model_ckpt_steps_{int(ckpt_steps)}.ckpt'] else: base_dir = ckpt_base_dir checkpoint_path = sorted( [ ckpt_file for ckpt_file in base_dir.iterdir() if ckpt_file.is_file() and re.fullmatch(r'model_ckpt_steps_\d+\.ckpt', ckpt_file.name) ], key=lambda x: int(re.search(r'\d+', x.name).group(0)) ) assert len(checkpoint_path) > 0, f'| ckpt not found in {ckpt_base_dir}.' checkpoint_path = checkpoint_path[-1] ckpt_loaded = torch.load(checkpoint_path, map_location=device) if isinstance(cur_model, CategorizedModule): cur_model.check_category(ckpt_loaded.get('category')) if key_in_ckpt is None: state_dict = ckpt_loaded else: state_dict = ckpt_loaded[key_in_ckpt] if prefix_in_ckpt is not None: state_dict = OrderedDict({ k[len(prefix_in_ckpt) + 1:]: v for k, v in state_dict.items() if k.startswith(f'{prefix_in_ckpt}.') if all(not k.startswith(p) for p in ignored_prefixes) }) if not strict: cur_model_state_dict = cur_model.state_dict() unmatched_keys = [] for key, param in state_dict.items(): if key in cur_model_state_dict: new_param = cur_model_state_dict[key] if new_param.shape != param.shape: unmatched_keys.append(key) print('| Unmatched keys: ', key, new_param.shape, param.shape) for key in unmatched_keys: del state_dict[key] cur_model.load_state_dict(state_dict, strict=strict) shown_model_name = 'state dict' if prefix_in_ckpt is not None: shown_model_name = f'\'{prefix_in_ckpt}\'' elif key_in_ckpt is not None: shown_model_name = f'\'{key_in_ckpt}\'' print(f'| load {shown_model_name} from \'{checkpoint_path}\'.') def remove_padding(x, padding_idx=0): if x is None: return None assert len(x.shape) in [1, 2] if len(x.shape) == 2: # [T, H] return x[np.abs(x).sum(-1) != padding_idx] elif len(x.shape) == 1: # [T] return x[x != padding_idx] class Timer: timer_map = {} def __init__(self, name, print_time=False): if name not in Timer.timer_map: Timer.timer_map[name] = 0 self.name = name self.print_time = print_time def __enter__(self): self.t = time.time() def __exit__(self, exc_type, exc_val, exc_tb): Timer.timer_map[self.name] += time.time() - self.t if self.print_time: print(self.name, Timer.timer_map[self.name]) def print_arch(model, model_name='model'): print(f"| {model_name} Arch: ", model) # num_params(model, model_name=model_name) def num_params(model, print_out=True, model_name="model"): parameters = filter(lambda p: p.requires_grad, model.parameters()) parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 if print_out: print(f'| {model_name} Trainable Parameters: %.3fM' % parameters) return parameters def build_object_from_class_name(cls_str, parent_cls, *args, **kwargs): import importlib pkg = ".".join(cls_str.split(".")[:-1]) cls_name = cls_str.split(".")[-1] cls_type = getattr(importlib.import_module(pkg), cls_name) if parent_cls is not None: assert issubclass(cls_type, parent_cls), f'| {cls_type} is not subclass of {parent_cls}.' return cls_type(*args, **filter_kwargs(kwargs, cls_type)) def build_lr_scheduler_from_config(optimizer, scheduler_args): try: # PyTorch 2.0+ from torch.optim.lr_scheduler import LRScheduler as LRScheduler except ImportError: # PyTorch 1.X from torch.optim.lr_scheduler import _LRScheduler as LRScheduler def helper(params): if isinstance(params, list): return [helper(s) for s in params] elif isinstance(params, dict): resolved = {k: helper(v) for k, v in params.items()} if 'cls' in resolved: if ( resolved["cls"] == "torch.optim.lr_scheduler.ChainedScheduler" and scheduler_args["scheduler_cls"] == "torch.optim.lr_scheduler.SequentialLR" ): raise ValueError(f"ChainedScheduler cannot be part of a SequentialLR.") resolved['optimizer'] = optimizer obj = build_object_from_class_name( resolved['cls'], LRScheduler, **resolved ) return obj return resolved else: return params resolved = helper(scheduler_args) resolved['optimizer'] = optimizer return build_object_from_class_name( scheduler_args['scheduler_cls'], LRScheduler, **resolved ) def simulate_lr_scheduler(optimizer_args, scheduler_args, step_count, num_param_groups=1): optimizer = build_object_from_class_name( optimizer_args['optimizer_cls'], torch.optim.Optimizer, [{'params': torch.nn.Parameter(), 'initial_lr': optimizer_args['lr']} for _ in range(num_param_groups)], **optimizer_args ) scheduler = build_lr_scheduler_from_config(optimizer, scheduler_args) scheduler.optimizer._step_count = 1 for _ in range(step_count): scheduler.step() return scheduler.state_dict() def remove_suffix(string: str, suffix: str): # Just for Python 3.8 compatibility, since `str.removesuffix()` API of is available since Python 3.9 if string.endswith(suffix): string = string[:-len(suffix)] return string