from typing import Optional import torch import torch.nn as nn class ConvNeXtBlock(nn.Module): """ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. Args: dim (int): Number of input channels. intermediate_dim (int): Dimensionality of the intermediate layer. layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. Defaults to None. """ def __init__( self, dim: int, intermediate_dim: int, layer_scale_init_value: Optional[float] = None, drop_out: float = 0.0 ): super().__init__() self.dwconv = nn.Conv1d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = nn.LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(intermediate_dim, dim) self.gamma = ( nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None ) # self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.drop_path = nn.Identity() self.dropout = nn.Dropout(drop_out) if drop_out > 0. else nn.Identity() def forward(self, x: torch.Tensor, ) -> torch.Tensor: residual = x x = self.dwconv(x) x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) x = self.dropout(x) x = residual + self.drop_path(x) return x class ConvNeXtDecoder(nn.Module): def __init__( self, in_dims, out_dims, /, *, num_channels=512, num_layers=6, kernel_size=7, dropout_rate=0.1 ): super().__init__() self.inconv = nn.Conv1d( in_dims, num_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2 ) self.conv = nn.ModuleList( ConvNeXtBlock( dim=num_channels, intermediate_dim=num_channels * 4, layer_scale_init_value=1e-6, drop_out=dropout_rate ) for _ in range(num_layers) ) self.outconv = nn.Conv1d( num_channels, out_dims, kernel_size, stride=1, padding=(kernel_size - 1) // 2 ) # noinspection PyUnusedLocal def forward(self, x, infer=False): x = x.transpose(1, 2) x = self.inconv(x) for conv in self.conv: x = conv(x) x = self.outconv(x) x = x.transpose(1, 2) return x